{"title":"Cardiac murmur grading and risk analysis of cardiac diseases based on adaptable heterogeneous-modality multi-task learning.","authors":"Chenyang Xu, Xin Li, Xinyue Zhang, Ruilin Wu, Yuxi Zhou, Qinghao Zhao, Yong Zhang, Shijia Geng, Yue Gu, Shenda Hong","doi":"10.1007/s13755-023-00249-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease (CVDs) has become one of the leading causes of death, posing a significant threat to human life. The development of reliable Artificial Intelligence (AI) assisted diagnosis algorithms for cardiac sounds is of great significance for early detection and treatment of CVDs. However, there is scarce research in this field. Existing research mainly faces three major challenges: (1) They mainly limited to murmur classification and cannot achieve murmur grading, but attempting both classification and grading may lead to negative effects between different multi-tasks. (2) They mostly pay attention to unstructured cardiac sound modality and do not consider the structured demographic modality, as it is difficult to balance the influence of heterogeneous modalities. (3) Deep learning methods lack interpretability, which makes it challenging to apply them clinically. To tackle these challenges, we propose a method for cardiac murmur grading and cardiac risk analysis based on heterogeneous modality adaptive multi-task learning. Specifically, a Hierarchical Multi-Task learning-based cardiac murmur detection and grading method (HMT) is proposed to prevent negative interference between different tasks. In addition, a cardiac risk analysis method based on Heterogeneous Multi-modal feature impact Adaptation (HMA) is also proposed, which transforms unstructured modality into structured modality representation, and utilizes an adaptive mode weight learning mechanism to balance the impact between unstructured modality and structured modality, thus enhancing the performance of cardiac risk prediction. Finally, we propose a multi-task interpretability learning module that incorporates an important evaluation using random masks. This module utilizes SHAP graphs to visualize crucial murmur segments in cardiac sound and employs a multi-factor risk decoupling model based on nomograms. And then we gain insights into the cardiac disease risk in both pre-decoupled multi-modality and post-decoupled single-modality scenarios, thus providing a solid foundation for AI assisted cardiac murmur grading and risk analysis. Experimental results on a large real-world CirCor DigiScope PCG dataset demonstrate that the proposed method outperforms the state-of-the-art (SOTA) method in murmur detection, grading, and cardiac risk analysis, while also providing valuable diagnostic evidence.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"2"},"PeriodicalIF":4.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00249-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disease (CVDs) has become one of the leading causes of death, posing a significant threat to human life. The development of reliable Artificial Intelligence (AI) assisted diagnosis algorithms for cardiac sounds is of great significance for early detection and treatment of CVDs. However, there is scarce research in this field. Existing research mainly faces three major challenges: (1) They mainly limited to murmur classification and cannot achieve murmur grading, but attempting both classification and grading may lead to negative effects between different multi-tasks. (2) They mostly pay attention to unstructured cardiac sound modality and do not consider the structured demographic modality, as it is difficult to balance the influence of heterogeneous modalities. (3) Deep learning methods lack interpretability, which makes it challenging to apply them clinically. To tackle these challenges, we propose a method for cardiac murmur grading and cardiac risk analysis based on heterogeneous modality adaptive multi-task learning. Specifically, a Hierarchical Multi-Task learning-based cardiac murmur detection and grading method (HMT) is proposed to prevent negative interference between different tasks. In addition, a cardiac risk analysis method based on Heterogeneous Multi-modal feature impact Adaptation (HMA) is also proposed, which transforms unstructured modality into structured modality representation, and utilizes an adaptive mode weight learning mechanism to balance the impact between unstructured modality and structured modality, thus enhancing the performance of cardiac risk prediction. Finally, we propose a multi-task interpretability learning module that incorporates an important evaluation using random masks. This module utilizes SHAP graphs to visualize crucial murmur segments in cardiac sound and employs a multi-factor risk decoupling model based on nomograms. And then we gain insights into the cardiac disease risk in both pre-decoupled multi-modality and post-decoupled single-modality scenarios, thus providing a solid foundation for AI assisted cardiac murmur grading and risk analysis. Experimental results on a large real-world CirCor DigiScope PCG dataset demonstrate that the proposed method outperforms the state-of-the-art (SOTA) method in murmur detection, grading, and cardiac risk analysis, while also providing valuable diagnostic evidence.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.