Interaction between Kölliker-Fuse/A7 and the parafacial respiratory region on the control of respiratory regulation

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Luiz M. Oliveira , Thiago S. Moreira , Ana C. Takakura
{"title":"Interaction between Kölliker-Fuse/A7 and the parafacial respiratory region on the control of respiratory regulation","authors":"Luiz M. Oliveira ,&nbsp;Thiago S. Moreira ,&nbsp;Ana C. Takakura","doi":"10.1016/j.resp.2023.104201","DOIUrl":null,"url":null,"abstract":"<div><p><span>Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem<span> and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GG</span></span><sub>EMG</sub>). Blockade of the α<sub>1</sub><span> adrenergic receptors (α</span><sub>1</sub><span>-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GG</span><sub>EMG</sub> without affecting inspiratory cessation. In contrast, blockade of α<sub>2</sub>-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GG<sub>EMG</sub> activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α<sub>1</sub> and α<sub>2</sub><span> adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.</span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104201"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001891","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.

Kölliker-Fuse/A7与面旁呼吸区在呼吸调节中的相互作用。
呼吸是由位于脑桥-髓质区的各种类型的神经元调节的。Kölliker-Fuse (KF)/A7去甲肾上腺素能神经元通过影响呼吸输出量来调节吸气周期。这些神经元相互连接,也可能投射到脑干和脊髓,可能参与调节吸气后阶段。在本研究中,我们假设面旁神经元(pF)与起源于KF/A7区的肾上腺素能机制一起,可能为呼吸调节提供了神经生理学基础。实验采用聚氨酯麻醉、迷走神经切断和人工通气的雄性Wistar大鼠。在KF/A7区注射l -谷氨酸可抑制吸气活动,延长和高振幅的颏舌活动(GGEMG)。阻断pF区α1肾上腺素能受体(α1- ar)或嗜离子性谷氨酸能受体可降低GGEMG的活性,但不影响吸气停止。相反,阻断pF区α2-AR可延长GG活性的持续时间。值得注意的是,KF/A7刺激诱导的吸气和GGEMG活动被Bötzinger复合体中谷氨酸能受体的双侧阻断(BötC)完全阻断。虽然我们的研究发现α1和α2肾上腺素能受体在pF水平上在调节KF/A7刺激下的呼吸反应中的作用有限,但很明显BötC神经元负责KF/A7刺激诱导的呼吸效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信