{"title":"Molecular characterization and in-depth genomic analysis to unravel the pathogenic features of an environmental isolate Enterobacter sp. S-33.","authors":"Kiran Kumari, Yogender Aggarwal, Rajnish Prakash Singh","doi":"10.1007/s10123-023-00461-y","DOIUrl":null,"url":null,"abstract":"<p><p>Enterobacter species represent widely distributed opportunistic pathogens, commonly associated with plants and humans. In the present study, we performed a detailed molecular characterization as well as genomic study of a type VI secretion system (T6SS) bacterium belonging to member of the family Enterobacteriaceae and named Enterobacter sp. S-33. The comparative sequence analysis of the 16S rRNA gene showed that the strain was closely related to other Enterobacter species. The complete genome of the strain with a genome size of 4.6 Mbp and GC-content of 55.63% was obtained through high-quality sequencing. The genomic analysis with online tools unravelled the various genes belonging to the bacterial secretion system, antibiotic resistance, virulence, efflux pumps, etc. The isolate showed the motility behavior that contributes to Enterobacter persistence in a stressed environment and further supports infections. PCR amplification and further sequencing confirmed the presence of drug-efflux genes acrA, acrB, and outer membrane genes, viz. OmpA, OmpC, and OmpF. The cell surface hydrophobicity and co-aggregation assay against different bacterial strains illustrated its putative pathogenic nature. Genome mining identified various biosynthetic gene clusters (BGCs) corresponding to non-ribosomal proteins (NRPS), siderophore, and arylpolyene production. Briefly, genome sequencing and detailed characterization of environmental Enterobacter isolate will assist in understanding the epidemiology of Enterobacter species, and the further prevention and treatment of infectious diseases caused by these broad-host range species.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1095-1110"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00461-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enterobacter species represent widely distributed opportunistic pathogens, commonly associated with plants and humans. In the present study, we performed a detailed molecular characterization as well as genomic study of a type VI secretion system (T6SS) bacterium belonging to member of the family Enterobacteriaceae and named Enterobacter sp. S-33. The comparative sequence analysis of the 16S rRNA gene showed that the strain was closely related to other Enterobacter species. The complete genome of the strain with a genome size of 4.6 Mbp and GC-content of 55.63% was obtained through high-quality sequencing. The genomic analysis with online tools unravelled the various genes belonging to the bacterial secretion system, antibiotic resistance, virulence, efflux pumps, etc. The isolate showed the motility behavior that contributes to Enterobacter persistence in a stressed environment and further supports infections. PCR amplification and further sequencing confirmed the presence of drug-efflux genes acrA, acrB, and outer membrane genes, viz. OmpA, OmpC, and OmpF. The cell surface hydrophobicity and co-aggregation assay against different bacterial strains illustrated its putative pathogenic nature. Genome mining identified various biosynthetic gene clusters (BGCs) corresponding to non-ribosomal proteins (NRPS), siderophore, and arylpolyene production. Briefly, genome sequencing and detailed characterization of environmental Enterobacter isolate will assist in understanding the epidemiology of Enterobacter species, and the further prevention and treatment of infectious diseases caused by these broad-host range species.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.