{"title":"Vitrimer-like of poly (glycerol sebacate) by using zinc acetate, zinc oxide and Amberlyst as catalysts","authors":"Montree Thongkam , Sairoong Saowsupa , Pesak Rungrojchaipon","doi":"10.1016/j.crgsc.2023.100388","DOIUrl":null,"url":null,"abstract":"<div><p>Polyglycerol sebacate (PGS) is elastomeric biodegradable polymer with potential biomedical and green packaging applications. This study focuses on the synthesis of vitrimer-like PGS utilizing various catalysts, including Zinc acetate, Zinc oxide and Amberlyst-15. The investigation of vitrimer-like of PGS polymer by polycondensation of glycerol and sebacic acid with various molar ratio of 1:1, 1:1.25 and 1:1.5 will be studied. The synthetic time and temperature were controlled at 72 h, 120 <sup>°</sup>C, respectively. The prepolymer of PGS had a weight-average molecular weight (Mw.) of 1743. The result of functional group was confirmed by Fourier transforms Infrared spectroscopy (FTIR). The intense C<img>O stretch at 1737 cm<sup>−1</sup> confirms the formation of ester bonds. The intense OH stretch at 3454 cm<sup>−1</sup> indicated hydroxyl groups from hydrogen bonded. When the quantity of catalyst is increased, the results of hardness are rising but swelling (%) becomes lower. The results showed a polymer network has higher cross-link when the catalyst increases. In addition, the proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR) analysis found that PGS using catalyst does not have peaks of glycerol.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"7 ","pages":"Article 100388"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086523000346/pdfft?md5=b21e36a3d6e26166876cb631aa33e836&pid=1-s2.0-S2666086523000346-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086523000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Polyglycerol sebacate (PGS) is elastomeric biodegradable polymer with potential biomedical and green packaging applications. This study focuses on the synthesis of vitrimer-like PGS utilizing various catalysts, including Zinc acetate, Zinc oxide and Amberlyst-15. The investigation of vitrimer-like of PGS polymer by polycondensation of glycerol and sebacic acid with various molar ratio of 1:1, 1:1.25 and 1:1.5 will be studied. The synthetic time and temperature were controlled at 72 h, 120 °C, respectively. The prepolymer of PGS had a weight-average molecular weight (Mw.) of 1743. The result of functional group was confirmed by Fourier transforms Infrared spectroscopy (FTIR). The intense CO stretch at 1737 cm−1 confirms the formation of ester bonds. The intense OH stretch at 3454 cm−1 indicated hydroxyl groups from hydrogen bonded. When the quantity of catalyst is increased, the results of hardness are rising but swelling (%) becomes lower. The results showed a polymer network has higher cross-link when the catalyst increases. In addition, the proton nuclear magnetic resonance spectroscopy (1H NMR) analysis found that PGS using catalyst does not have peaks of glycerol.