Mujittapha Umar Sirajo , John C. Oyem , Mohammed Ibrahim Badamasi
{"title":"Supplementation with vitamins D3 and a mitigates Parkinsonism in a haloperidol mice model","authors":"Mujittapha Umar Sirajo , John C. Oyem , Mohammed Ibrahim Badamasi","doi":"10.1016/j.jchemneu.2023.102366","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><span>Earlier reports suggest that vitamin D3 (Vit D3) supplementation attenuates </span>Parkinsonism in drug-induced motor deficits. Moreover, the function of Vit D3 may be optimized by co-administration with vitamin A (Vit A). In line with the synergistic interplay between vitamins, we hypothesized that the efficacy of Vit D3 to attenuate Parkinsonism in a haloperidol-induced mouse model of motor deficits would be more potent when concomitantly administered with Vit A.</p></div><div><h3>Methods</h3><p><span>Thirty-six (36) adult male mice were randomly divided into six groups of six animals each: the control group, the PD model (haloperidol-treated only group) (-D2), and four other groups treated with </span>haloperidol<span> together with either one or two of the following vitamin supplementations: Vit D3, Vit A, Vit D3 +VA, or bromocriptine a known PD drug respectively. Motor functions were assessed using a battery of neurobehavioral tests in experimental animals, after which brain tissues were harvested and processed for biochemical and histomorphological analysis.</span></p></div><div><h3>Results</h3><p>We recorded a significant decline in motor activity in the PD mice model treated with haloperidol alone compared to other experimental groups that received vitamin supplementations. The significant decrease in motor activity observed in the PD mice model corresponded with marked neurodegenerative features in the cytoarchitecture<span> of the pyramidal cells<span><span> in the striatum and primary motor cortex (M1). Furthermore, the haloperidol-induced PD mice model treated with Vit D3 +Vit A showed significant improvement in motor activity and attenuation of </span>oxidative stress levels and neurodegenerative features compared to other groups treated with Vit A, Vit D3 and bromocriptine alone.</span></span></p></div><div><h3>Conclusion</h3><p>Altogether, our findings suggest that concomitant administration of both Vit D3 and Vit A prevents the development of Parkinsonism features in the haloperidol mouse model of motor deficit. Thus, supplementation with Vit D3 +Vit A may be a viable option for slowing the onset and progression of motor deficits.</p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"135 ","pages":"Article 102366"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061823001369","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Earlier reports suggest that vitamin D3 (Vit D3) supplementation attenuates Parkinsonism in drug-induced motor deficits. Moreover, the function of Vit D3 may be optimized by co-administration with vitamin A (Vit A). In line with the synergistic interplay between vitamins, we hypothesized that the efficacy of Vit D3 to attenuate Parkinsonism in a haloperidol-induced mouse model of motor deficits would be more potent when concomitantly administered with Vit A.
Methods
Thirty-six (36) adult male mice were randomly divided into six groups of six animals each: the control group, the PD model (haloperidol-treated only group) (-D2), and four other groups treated with haloperidol together with either one or two of the following vitamin supplementations: Vit D3, Vit A, Vit D3 +VA, or bromocriptine a known PD drug respectively. Motor functions were assessed using a battery of neurobehavioral tests in experimental animals, after which brain tissues were harvested and processed for biochemical and histomorphological analysis.
Results
We recorded a significant decline in motor activity in the PD mice model treated with haloperidol alone compared to other experimental groups that received vitamin supplementations. The significant decrease in motor activity observed in the PD mice model corresponded with marked neurodegenerative features in the cytoarchitecture of the pyramidal cells in the striatum and primary motor cortex (M1). Furthermore, the haloperidol-induced PD mice model treated with Vit D3 +Vit A showed significant improvement in motor activity and attenuation of oxidative stress levels and neurodegenerative features compared to other groups treated with Vit A, Vit D3 and bromocriptine alone.
Conclusion
Altogether, our findings suggest that concomitant administration of both Vit D3 and Vit A prevents the development of Parkinsonism features in the haloperidol mouse model of motor deficit. Thus, supplementation with Vit D3 +Vit A may be a viable option for slowing the onset and progression of motor deficits.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.