The method of constant terms and k-colored generalized Frobenius partitions

IF 0.9 2区 数学 Q2 MATHEMATICS
Su-Ping Cui , Nancy S.S. Gu , Dazhao Tang
{"title":"The method of constant terms and k-colored generalized Frobenius partitions","authors":"Su-Ping Cui ,&nbsp;Nancy S.S. Gu ,&nbsp;Dazhao Tang","doi":"10.1016/j.jcta.2023.105837","DOIUrl":null,"url":null,"abstract":"<div><p>In his 1984 AMS memoir, Andrews introduced the family of <em>k</em><span>-colored generalized Frobenius<span> partition functions. For any positive integer </span></span><em>k</em>, let <span><math><mi>c</mi><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of <em>k</em>-colored generalized Frobenius partitions of <em>n</em>. Among many other things, Andrews proved that for any <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>c</mi><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>5</mn><mi>n</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>5</mn><mo>)</mo></math></span><span>. Since then, many scholars subsequently considered congruence properties of various </span><em>k</em>-colored generalized Frobenius partition functions, typically with a small number of colors.</p><p>In 2019, Chan, Wang and Yang systematically studied arithmetic properties of <span><math><mtext>C</mtext><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> with <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>17</mn></math></span> by employing the theory of modular forms, where <span><math><mtext>C</mtext><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> denotes the generating function of <span><math><mi>c</mi><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. We notice that many coefficients in the expressions of <span><math><mtext>C</mtext><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> are not integers. In this paper, we first observe that <span><math><mtext>C</mtext><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span><span> is related to the constant term of a family of bivariable functions, then establish a general symmetric and recurrence relation on the coefficients of these bivariable functions. Based on this relation, we next derive many bivariable identities. By extracting and computing the constant terms of these bivariable identities, we establish the expressions of </span><span><math><mtext>C</mtext><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span><span> with integral coefficients. As an immediate consequence, we prove some infinite families of congruences satisfied by </span><span><math><mi>c</mi><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, where <em>k</em> is allowed to grow arbitrary large.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105837"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652300105X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In his 1984 AMS memoir, Andrews introduced the family of k-colored generalized Frobenius partition functions. For any positive integer k, let cϕk(n) denote the number of k-colored generalized Frobenius partitions of n. Among many other things, Andrews proved that for any n0, cϕ2(5n+3)0(mod5). Since then, many scholars subsequently considered congruence properties of various k-colored generalized Frobenius partition functions, typically with a small number of colors.

In 2019, Chan, Wang and Yang systematically studied arithmetic properties of CΦk(q) with 2k17 by employing the theory of modular forms, where CΦk(q) denotes the generating function of cϕk(n). We notice that many coefficients in the expressions of CΦk(q) are not integers. In this paper, we first observe that CΦk(q) is related to the constant term of a family of bivariable functions, then establish a general symmetric and recurrence relation on the coefficients of these bivariable functions. Based on this relation, we next derive many bivariable identities. By extracting and computing the constant terms of these bivariable identities, we establish the expressions of CΦk(q) with integral coefficients. As an immediate consequence, we prove some infinite families of congruences satisfied by cϕk(n), where k is allowed to grow arbitrary large.

常项法与k色广义Frobenius划分
在他1984年的AMS回忆录中,Andrews介绍了k色广义Frobenius配分函数族。对于任意正整数k,令cϕk(n)表示n的k色广义Frobenius分区的个数。在许多其他的事情中,Andrews证明了对于任意n≥0,cϕ2(5n+3)≡0(mod5)。此后,许多学者随后考虑了各种k色广义Frobenius配分函数的同余性质,通常只有少量的颜色。2019年,Chan、Wang和Yang利用模形式理论系统地研究了2≤k≤17的CΦk(q)的算术性质,其中CΦk(q)表示c k(n)的生成函数。我们注意到CΦk(q)表达式中的许多系数不是整数。本文首先观察到CΦk(q)与一类双变量函数的常项有关,然后在这些双变量函数的系数上建立了一般的对称递推关系。基于这个关系,我们推导了许多双变量恒等式。通过提取和计算这些双变量恒等式的常数项,我们建立了CΦk(q)的积分系数表达式。作为一个直接的结果,我们证明了一些由c k(n)满足的无穷同余族,其中k可以任意增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信