Study on the Influence of the Microgravity on the Flow and Heat Transfer Characteristics of Gas–Liquid Two-Phase Flow in Evaporator

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rui Ma, Jiamin Guo, Yilin Ye, Yuting Wu
{"title":"Study on the Influence of the Microgravity on the Flow and Heat Transfer Characteristics of Gas–Liquid Two-Phase Flow in Evaporator","authors":"Rui Ma,&nbsp;Jiamin Guo,&nbsp;Yilin Ye,&nbsp;Yuting Wu","doi":"10.1007/s12217-023-10084-7","DOIUrl":null,"url":null,"abstract":"<div><p>In a microgravity environment, the flow pattern, flow characteristics, and heat transfer characteristics of gas–liquid two-phase flow are different from those in a normal gravity environment. To study the influence of microgravity on the flow and heat-transfer characteristics in an evaporator, this study develops a flow and heat-transfer model in an evaporator based on a previously proposed microgravity solution where the refrigerant and lubricating oil are mixed. This work also examines the flow and heat-transfer characteristics of gas–liquid two-phase flow in an evaporator with gravity of 10<sup>–6</sup>-10<sup>−3</sup> g and studies the influence of lubricating-oil content on the flow and heat-transfer characteristics of mixed two-phase flow in the evaporator. The results show that when gravity is equal to 10<sup>−3</sup> g, the gas volume fraction at the outlet is between 0.6 and 0.7, and when gravity is decreased to 10<sup>–6</sup> g, the gas volume fraction at the outlet of the evaporator, after gradually decreasing, comes close to a zero gravity-state. In addition, the gas volume fraction remains between 0.3 and 0.6. It can also be seen that when gravity increases, the heat-transfer coefficient increases nearly linearly and reaches a maximum value of 14.013 W/(m<sup>2</sup>·K) and 16.066 W/(m<sup>2</sup>·K) when the lubricating oil content is 2% for normal gravity, and 4.443 W/(m<sup>2</sup>·K) and 5.519 W/(m<sup>2</sup>·K) when the lubricating oil content is 2.5% for microgravity.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10084-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In a microgravity environment, the flow pattern, flow characteristics, and heat transfer characteristics of gas–liquid two-phase flow are different from those in a normal gravity environment. To study the influence of microgravity on the flow and heat-transfer characteristics in an evaporator, this study develops a flow and heat-transfer model in an evaporator based on a previously proposed microgravity solution where the refrigerant and lubricating oil are mixed. This work also examines the flow and heat-transfer characteristics of gas–liquid two-phase flow in an evaporator with gravity of 10–6-10−3 g and studies the influence of lubricating-oil content on the flow and heat-transfer characteristics of mixed two-phase flow in the evaporator. The results show that when gravity is equal to 10−3 g, the gas volume fraction at the outlet is between 0.6 and 0.7, and when gravity is decreased to 10–6 g, the gas volume fraction at the outlet of the evaporator, after gradually decreasing, comes close to a zero gravity-state. In addition, the gas volume fraction remains between 0.3 and 0.6. It can also be seen that when gravity increases, the heat-transfer coefficient increases nearly linearly and reaches a maximum value of 14.013 W/(m2·K) and 16.066 W/(m2·K) when the lubricating oil content is 2% for normal gravity, and 4.443 W/(m2·K) and 5.519 W/(m2·K) when the lubricating oil content is 2.5% for microgravity.

Abstract Image

微重力对蒸发器内气液两相流流动及传热特性影响的研究
在微重力环境下,气液两相流的流型、流动特性和换热特性都不同于正常重力环境。为了研究微重力对蒸发器流动和传热特性的影响,本研究基于先前提出的制冷剂和润滑油混合的微重力解决方案,建立了蒸发器流动和传热模型。本文还研究了重力为10-6-10−3 g的蒸发器内气液两相流的流动和传热特性,并研究了润滑油含量对蒸发器内混合两相流流动和传热特性的影响。结果表明:当重力为10 ~ 3 g时,蒸发器出口气体体积分数在0.6 ~ 0.7之间,当重力减小到10 ~ 6 g时,蒸发器出口气体体积分数逐渐减小,接近于重力为零的状态。此外,气体体积分数保持在0.3 ~ 0.6之间。还可以看出,随着重力的增加,传热系数几乎呈线性增加,在正常重力条件下,当润滑油含量为2%时,传热系数达到最大值,分别为14.013 W/(m2·K)和16.066 W/(m2·K);在微重力条件下,当润滑油含量为2.5%时,传热系数分别为4.443 W/(m2·K)和5.519 W/(m2·K)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信