High-performance Ellipsoidal Clipmaps

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Aleksandar Dimitrijević, Dejan Rančić
{"title":"High-performance Ellipsoidal Clipmaps","authors":"Aleksandar Dimitrijević,&nbsp;Dejan Rančić","doi":"10.1016/j.gmod.2023.101209","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents performance improvements for Ellipsoid Clipmaps, an out-of-core planet-sized geodetically accurate terrain rendering algorithm. The performance improvements were achieved by eliminating unnecessarily dense levels, more accurate block culling in the geographic coordinate system, and more efficient rendering methods. The elimination of unnecessarily dense levels is the result of analyzing and determining the optimal relative height of the viewer with respect to the most detailed level, resulting in the most consistent size of triangles across all visible levels. The proposed method for estimating the visibility of blocks based on view orientation allows rapid block-level view frustum culling performed in data space before visualization and spatial transformation of blocks. The use of a modern geometry pipeline through task and mesh shaders forced the handling of extremely fine granularity of blocks, but also shifted a significant part of the block culling process from CPU to the GPU. The approach described achieves high throughput and enables geodetically accurate rendering of the terrain based on the WGS 84 reference ellipsoid at very high resolution and in real time, with tens of millions of triangles with an average area of about 0.5 pix<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> on a 1080p screen on mid-range graphics cards.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"130 ","pages":"Article 101209"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070323000395/pdfft?md5=26122c390b83d408f64d205c80bb4675&pid=1-s2.0-S1524070323000395-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000395","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents performance improvements for Ellipsoid Clipmaps, an out-of-core planet-sized geodetically accurate terrain rendering algorithm. The performance improvements were achieved by eliminating unnecessarily dense levels, more accurate block culling in the geographic coordinate system, and more efficient rendering methods. The elimination of unnecessarily dense levels is the result of analyzing and determining the optimal relative height of the viewer with respect to the most detailed level, resulting in the most consistent size of triangles across all visible levels. The proposed method for estimating the visibility of blocks based on view orientation allows rapid block-level view frustum culling performed in data space before visualization and spatial transformation of blocks. The use of a modern geometry pipeline through task and mesh shaders forced the handling of extremely fine granularity of blocks, but also shifted a significant part of the block culling process from CPU to the GPU. The approach described achieves high throughput and enables geodetically accurate rendering of the terrain based on the WGS 84 reference ellipsoid at very high resolution and in real time, with tens of millions of triangles with an average area of about 0.5 pix2 on a 1080p screen on mid-range graphics cards.

Abstract Image

高性能椭球体剪贴图
本文介绍了椭球Clipmaps的性能改进,椭球Clipmaps是一种核外行星大小的大地测量精确地形绘制算法。性能改进是通过消除不必要的密集级别、在地理坐标系中更精确的块剔除和更有效的渲染方法来实现的。消除不必要的密集关卡是分析和确定观看者相对于最详细关卡的最佳相对高度的结果,从而在所有可见关卡中产生最一致的三角形大小。提出的基于视图方向的块可见性估计方法允许在块可视化和空间转换之前在数据空间中快速进行块级视图截锥体剔除。通过任务和网格着色器使用现代几何管道强制处理极细粒度的块,但也将块剔除过程的重要部分从CPU转移到GPU。所描述的方法实现了高吞吐量,并能够基于WGS 84参考椭球体以非常高的分辨率和实时的大地测量精度渲染地形,在中程显卡的1080p屏幕上具有数千万个平均面积约为0.5 pix2的三角形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信