{"title":"High-performance Ellipsoidal Clipmaps","authors":"Aleksandar Dimitrijević, Dejan Rančić","doi":"10.1016/j.gmod.2023.101209","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents performance improvements for Ellipsoid Clipmaps, an out-of-core planet-sized geodetically accurate terrain rendering algorithm. The performance improvements were achieved by eliminating unnecessarily dense levels, more accurate block culling in the geographic coordinate system, and more efficient rendering methods. The elimination of unnecessarily dense levels is the result of analyzing and determining the optimal relative height of the viewer with respect to the most detailed level, resulting in the most consistent size of triangles across all visible levels. The proposed method for estimating the visibility of blocks based on view orientation allows rapid block-level view frustum culling performed in data space before visualization and spatial transformation of blocks. The use of a modern geometry pipeline through task and mesh shaders forced the handling of extremely fine granularity of blocks, but also shifted a significant part of the block culling process from CPU to the GPU. The approach described achieves high throughput and enables geodetically accurate rendering of the terrain based on the WGS 84 reference ellipsoid at very high resolution and in real time, with tens of millions of triangles with an average area of about 0.5 pix<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> on a 1080p screen on mid-range graphics cards.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"130 ","pages":"Article 101209"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070323000395/pdfft?md5=26122c390b83d408f64d205c80bb4675&pid=1-s2.0-S1524070323000395-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000395","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents performance improvements for Ellipsoid Clipmaps, an out-of-core planet-sized geodetically accurate terrain rendering algorithm. The performance improvements were achieved by eliminating unnecessarily dense levels, more accurate block culling in the geographic coordinate system, and more efficient rendering methods. The elimination of unnecessarily dense levels is the result of analyzing and determining the optimal relative height of the viewer with respect to the most detailed level, resulting in the most consistent size of triangles across all visible levels. The proposed method for estimating the visibility of blocks based on view orientation allows rapid block-level view frustum culling performed in data space before visualization and spatial transformation of blocks. The use of a modern geometry pipeline through task and mesh shaders forced the handling of extremely fine granularity of blocks, but also shifted a significant part of the block culling process from CPU to the GPU. The approach described achieves high throughput and enables geodetically accurate rendering of the terrain based on the WGS 84 reference ellipsoid at very high resolution and in real time, with tens of millions of triangles with an average area of about 0.5 pix on a 1080p screen on mid-range graphics cards.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.