Monochromatic arithmetic progressions in automatic sequences with group structure

IF 0.9 2区 数学 Q2 MATHEMATICS
Ibai Aedo , Uwe Grimm , Neil Mañibo , Yasushi Nagai , Petra Staynova
{"title":"Monochromatic arithmetic progressions in automatic sequences with group structure","authors":"Ibai Aedo ,&nbsp;Uwe Grimm ,&nbsp;Neil Mañibo ,&nbsp;Yasushi Nagai ,&nbsp;Petra Staynova","doi":"10.1016/j.jcta.2023.105831","DOIUrl":null,"url":null,"abstract":"<div><p><span>We determine asymptotic growth rates for lengths of monochromatic arithmetic progressions in certain automatic sequences. In particular, we look at (one-sided) fixed points of aperiodic, primitive, bijective substitutions and spin substitutions, which are generalisations of the Thue–Morse and Rudin–Shapiro substitutions, respectively. For such infinite words, we show that there exists a subsequence </span><span><math><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> of differences along which the maximum length <span><math><mi>A</mi><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of a monochromatic arithmetic progression (with fixed difference <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) grows at least polynomially in <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>. Explicit upper and lower bounds for the growth exponent can be derived from a finite group associated to the substitution. As an application, we obtain bounds for a van der Waerden-type number for a class of colourings parametrised by the size of the alphabet and the length of the substitution.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105831"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000997","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We determine asymptotic growth rates for lengths of monochromatic arithmetic progressions in certain automatic sequences. In particular, we look at (one-sided) fixed points of aperiodic, primitive, bijective substitutions and spin substitutions, which are generalisations of the Thue–Morse and Rudin–Shapiro substitutions, respectively. For such infinite words, we show that there exists a subsequence {dn} of differences along which the maximum length A(dn) of a monochromatic arithmetic progression (with fixed difference dn) grows at least polynomially in dn. Explicit upper and lower bounds for the growth exponent can be derived from a finite group associated to the substitution. As an application, we obtain bounds for a van der Waerden-type number for a class of colourings parametrised by the size of the alphabet and the length of the substitution.

群结构自动数列中的单色等差数列
我们确定了某些自动序列中单色等差数列长度的渐近增长率。特别地,我们观察了非周期、原始、双射取代和自旋取代的(单边)不动点,它们分别是Thue-Morse和Rudin-Shapiro取代的推广。对于这样的无限字,我们证明了存在一个差值的子序列{dn},在这个子序列中,一个单色等差数列(差值固定dn)的最大长度a (dn)在dn上至少多项式地增长。生长指数的显式上界和下界可以由与替换相关的有限群导出。作为一个应用,我们得到了一类由字母大小和替换长度参数化的着色的van der waerden型数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信