{"title":"Field electron emission in the atmospheric pressure range","authors":"L. Trascinelli , K.L. Aplin","doi":"10.1016/j.elstat.2023.103867","DOIUrl":null,"url":null,"abstract":"<div><p>Field emission is a well-known technology for generating electrons under vacuum conditions. Here we assess whether gated silicon field emitter microstructures, originally developed for use in space, can ionise air for electroaerodynamic propulsion and other applications. Electron range in air is compared to breakdown voltage over the atmospheric pressure range, to evaluate whether an operational region exists for which the geometry permits electrons to escape and ionise, whilst keeping the voltage low enough to avoid breakdown. An operational region is identified between 500–100 V for pressures corresponding to 0–20 km altitude. This offers low-power and low-mass operation in comparison to existing ionisation technologies. Carbon nanotube field emitters may offer enhanced performance over the silicon emitters. Field electron emission represents a new air ionisation technology which may be appropriate for light-weight, high-altitude aircraft propulsion.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"127 ","pages":"Article 103867"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304388623000761/pdfft?md5=cd33ccb76c78f1c8a40806bb2ee768b2&pid=1-s2.0-S0304388623000761-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388623000761","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Field emission is a well-known technology for generating electrons under vacuum conditions. Here we assess whether gated silicon field emitter microstructures, originally developed for use in space, can ionise air for electroaerodynamic propulsion and other applications. Electron range in air is compared to breakdown voltage over the atmospheric pressure range, to evaluate whether an operational region exists for which the geometry permits electrons to escape and ionise, whilst keeping the voltage low enough to avoid breakdown. An operational region is identified between 500–100 V for pressures corresponding to 0–20 km altitude. This offers low-power and low-mass operation in comparison to existing ionisation technologies. Carbon nanotube field emitters may offer enhanced performance over the silicon emitters. Field electron emission represents a new air ionisation technology which may be appropriate for light-weight, high-altitude aircraft propulsion.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.