New Insights into the Complement Receptor of the Ig Superfamily Obtained from Structural and Functional Studies on Two Mutants.

Q3 Medicine
Huiquan Duan, Troy G Abram, Ana Rita Cruz, Suzan H M Rooijakkers, Brian V Geisbrecht
{"title":"New Insights into the Complement Receptor of the Ig Superfamily Obtained from Structural and Functional Studies on Two Mutants.","authors":"Huiquan Duan, Troy G Abram, Ana Rita Cruz, Suzan H M Rooijakkers, Brian V Geisbrecht","doi":"10.4049/immunohorizons.2300064","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular region of the complement receptor of the Ig superfamily (CRIg) binds to certain C3 cleavage products (C3b, iC3b, C3c) and inhibits the alternative pathway (AP) of complement. In this study, we provide further insight into the CRIg protein and describe two CRIg mutants that lack multiple lysine residues as a means of facilitating chemical modifications of the protein. Structural analyses confirmed preservation of the native CRIg architecture in both mutants. In contrast to earlier reports suggesting that CRIg binds to C3b with an affinity of ∼1 μM, we found that wild-type CRIg binds to C3b and iC3b with affinities <100 nM, but to C3c with an affinity closer to 1 μM. We observed this same trend for both lysine substitution mutants, albeit with an apparent ∼2- to 3-fold loss of affinity when compared with wild-type CRIg. Using flow cytometry, we confirmed binding to C3 fragment-opsonized Staphylococcus aureus cells by each mutant, again with an ∼2- to 3-fold decrease when compared with wild-type. Whereas wild-type CRIg inhibits AP-driven lysis of rabbit erythrocytes with an IC50 of 1.6 μM, we observed an ∼3-fold reduction in inhibition for both mutants. Interestingly, we found that amine-reactive crosslinking of the CRIg mutant containing only a single lysine results in a significant improvement in inhibitory potency across all concentrations examined when compared with the unmodified mutant, but in a manner sensitive to the length of the crosslinker. Collectively, our findings provide new insights into the CRIg protein and suggest an approach for engineering increasingly potent CRIg-based inhibitors of the AP.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"7 11","pages":"806-818"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2300064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The extracellular region of the complement receptor of the Ig superfamily (CRIg) binds to certain C3 cleavage products (C3b, iC3b, C3c) and inhibits the alternative pathway (AP) of complement. In this study, we provide further insight into the CRIg protein and describe two CRIg mutants that lack multiple lysine residues as a means of facilitating chemical modifications of the protein. Structural analyses confirmed preservation of the native CRIg architecture in both mutants. In contrast to earlier reports suggesting that CRIg binds to C3b with an affinity of ∼1 μM, we found that wild-type CRIg binds to C3b and iC3b with affinities <100 nM, but to C3c with an affinity closer to 1 μM. We observed this same trend for both lysine substitution mutants, albeit with an apparent ∼2- to 3-fold loss of affinity when compared with wild-type CRIg. Using flow cytometry, we confirmed binding to C3 fragment-opsonized Staphylococcus aureus cells by each mutant, again with an ∼2- to 3-fold decrease when compared with wild-type. Whereas wild-type CRIg inhibits AP-driven lysis of rabbit erythrocytes with an IC50 of 1.6 μM, we observed an ∼3-fold reduction in inhibition for both mutants. Interestingly, we found that amine-reactive crosslinking of the CRIg mutant containing only a single lysine results in a significant improvement in inhibitory potency across all concentrations examined when compared with the unmodified mutant, but in a manner sensitive to the length of the crosslinker. Collectively, our findings provide new insights into the CRIg protein and suggest an approach for engineering increasingly potent CRIg-based inhibitors of the AP.

从两个突变体的结构和功能研究获得Ig超家族补体受体的新见解
Ig超家族(CRIg)的补体受体的细胞外区域结合某些C3切割产物(C3b, iC3b, C3c)并抑制补体的替代途径(AP)。在这项研究中,我们进一步深入了解了CRIg蛋白,并描述了两种缺乏多个赖氨酸残基的CRIg突变体,作为促进蛋白质化学修饰的手段。结构分析证实,这两个突变体都保留了原生的CRIg结构。与之前报道的CRIg以1 μM的亲和力与C3b结合相反,我们发现野生型CRIg以亲和力与C3b和iC3b结合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信