Cold snapshots of DNA repair: Cryo-EM structures of DNA-PKcs and NHEJ machinery

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Himani Amin , Sayma Zahid , Chloe Hall , Amanda K. Chaplin
{"title":"Cold snapshots of DNA repair: Cryo-EM structures of DNA-PKcs and NHEJ machinery","authors":"Himani Amin ,&nbsp;Sayma Zahid ,&nbsp;Chloe Hall ,&nbsp;Amanda K. Chaplin","doi":"10.1016/j.pbiomolbio.2023.11.007","DOIUrl":null,"url":null,"abstract":"<div><p>The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"186 ","pages":"Pages 1-13"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723001001/pdfft?md5=82993d4cb25614e14dc6c19e75a17d9e&pid=1-s2.0-S0079610723001001-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723001001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.

DNA修复的冷快照:DNA- pkcs和NHEJ机制的低温电镜结构。
在过去的几十年里,参与DNA修复的蛋白质和蛋白质组装一直是众多结构研究的焦点。历史上,这些蛋白质复合物的结构已经被x射线晶体学解决了。然而,最近随着冷冻电子显微镜(cryo-EM)的进步,从优化样品制备方法到改进电子探测器的开发,焦点已经从x射线晶体学转移到冷冻电子显微镜。这种方法上的转变使得DNA修复途径中更大、更复杂的蛋白质组装的结构确定成为可能,并随后导致对这些迷人的分子机器所利用的机制有了更深入的了解。在这里,我们回顾了使用冷冻电镜研究非同源末端连接(NHEJ)的一些关键结构进展,重点关注由DNA-PKcs和Ku70/80 (Ku)组成的组装,以及用于获得这些结构的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Biophysics & Molecular Biology
Progress in Biophysics & Molecular Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
7.90%
发文量
85
审稿时长
85 days
期刊介绍: Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信