{"title":"CLAD-Net: cross-layer aggregation attention network for real-time endoscopic instrument detection.","authors":"Xiushun Zhao, Jing Guo, Zhaoshui He, Xiaobing Jiang, Haifang Lou, Depei Li","doi":"10.1007/s13755-023-00260-9","DOIUrl":null,"url":null,"abstract":"<p><p>As medical treatments continue to advance rapidly, minimally invasive surgery (MIS) has found extensive applications across various clinical procedures. Accurate identification of medical instruments plays a vital role in comprehending surgical situations and facilitating endoscopic image-guided surgical procedures. However, the endoscopic instrument detection poses a great challenge owing to the narrow operating space, with various interfering factors (e.g. smoke, blood, body fluids) and inevitable issues (e.g. mirror reflection, visual obstruction, illumination variation) in the surgery. To promote surgical efficiency and safety in MIS, this paper proposes a cross-layer aggregated attention detection network (CLAD-Net) for accurate and real-time detection of endoscopic instruments in complex surgical scenarios. We propose a cross-layer aggregation attention module to enhance the fusion of features and raise the effectiveness of lateral propagation of feature information. We propose a composite attention mechanism (CAM) to extract contextual information at different scales and model the importance of each channel in the feature map, mitigate the information loss due to feature fusion, and effectively solve the problem of inconsistent target size and low contrast in complex contexts. Moreover, the proposed feature refinement module (RM) enhances the network's ability to extract target edge and detail information by adaptively adjusting the feature weights to fuse different layers of features. The performance of CLAD-Net was evaluated using a public laparoscopic dataset Cholec80 and another set of neuroendoscopic dataset from Sun Yat-sen University Cancer Center. From both datasets and comparisons, CLAD-Net achieves the <math><mrow><mi>A</mi><msub><mi>P</mi><mrow><mn>0.5</mn></mrow></msub></mrow></math> of 98.9% and 98.6%, respectively, that is better than advanced detection networks. A video for the real-time detection is presented in the following link: https://github.com/A0268/video-demo.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"58"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10678866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00260-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
As medical treatments continue to advance rapidly, minimally invasive surgery (MIS) has found extensive applications across various clinical procedures. Accurate identification of medical instruments plays a vital role in comprehending surgical situations and facilitating endoscopic image-guided surgical procedures. However, the endoscopic instrument detection poses a great challenge owing to the narrow operating space, with various interfering factors (e.g. smoke, blood, body fluids) and inevitable issues (e.g. mirror reflection, visual obstruction, illumination variation) in the surgery. To promote surgical efficiency and safety in MIS, this paper proposes a cross-layer aggregated attention detection network (CLAD-Net) for accurate and real-time detection of endoscopic instruments in complex surgical scenarios. We propose a cross-layer aggregation attention module to enhance the fusion of features and raise the effectiveness of lateral propagation of feature information. We propose a composite attention mechanism (CAM) to extract contextual information at different scales and model the importance of each channel in the feature map, mitigate the information loss due to feature fusion, and effectively solve the problem of inconsistent target size and low contrast in complex contexts. Moreover, the proposed feature refinement module (RM) enhances the network's ability to extract target edge and detail information by adaptively adjusting the feature weights to fuse different layers of features. The performance of CLAD-Net was evaluated using a public laparoscopic dataset Cholec80 and another set of neuroendoscopic dataset from Sun Yat-sen University Cancer Center. From both datasets and comparisons, CLAD-Net achieves the of 98.9% and 98.6%, respectively, that is better than advanced detection networks. A video for the real-time detection is presented in the following link: https://github.com/A0268/video-demo.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.