Toward uncovering an operating system in plant organs.

IF 17.3 1区 生物学 Q1 PLANT SCIENCES
Trends in Plant Science Pub Date : 2024-07-01 Epub Date: 2023-11-29 DOI:10.1016/j.tplants.2023.11.006
Gwendolyn V Davis, Tatiana de Souza Moraes, Swanand Khanapurkar, Hannah Dromiack, Zaki Ahmad, Emmanuelle M Bayer, Rishikesh P Bhalerao, Sara I Walker, George W Bassel
{"title":"Toward uncovering an operating system in plant organs.","authors":"Gwendolyn V Davis, Tatiana de Souza Moraes, Swanand Khanapurkar, Hannah Dromiack, Zaki Ahmad, Emmanuelle M Bayer, Rishikesh P Bhalerao, Sara I Walker, George W Bassel","doi":"10.1016/j.tplants.2023.11.006","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2023.11.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.

朝着揭示植物器官的操作系统的方向。
分子基序可以解释单细胞内的信息处理,而细胞组合如何共同实现这一目标仍然不太清楚。植物的适应性和生存依赖于它们分散的多细胞器官系统中健全而准确的决策。包括激素、代谢物和rna在内的移动因子在协调多细胞集体决策中起着核心作用,然而描述细胞间通讯如何扩展到器官水平转变的机制却知之甚少。在这里,我们探索如何统一输出可能出现在植物器官通过分布式信息处理跨不同尺度和使用不同的方式。还探讨了这些事件的数学和计算表示,以了解这些事件是如何发生的,并利用这些事件来操纵植物的发育以响应环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信