Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease.

IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING
Stem Cells International Pub Date : 2023-11-22 eCollection Date: 2023-01-01 DOI:10.1155/2023/6500831
Xiaorong Yin, Lizhi Lin, Fang Fang, Bin Zhang, Cheng Shen
{"title":"Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease.","authors":"Xiaorong Yin, Lizhi Lin, Fang Fang, Bin Zhang, Cheng Shen","doi":"10.1155/2023/6500831","DOIUrl":null,"url":null,"abstract":"<p><p>The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2023 ","pages":"6500831"},"PeriodicalIF":3.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/6500831","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.

缺血性心脏病中间充质干细胞旁分泌外泌体的机制和优化策略。
心肌梗死(MI)的发病率和死亡率在世界范围内呈上升趋势。间充质干细胞(MSCs)是具有自我更新和分化能力的多能干细胞,在组织愈合和再生医学中至关重要。然而,移植细胞的低着床率和存活率阻碍了干细胞的广泛临床应用。外泌体是由细胞分泌的天然纳米囊泡,通过转运非编码RNA和蛋白质促进心脏功能的修复。近年来,msc衍生的外泌体已成为改善心脏功能和逆转心脏重塑的无细胞治疗工具。本文综述了外泌体的生物学特性和治疗潜力,并总结了一些优化外泌体的工程方法,以提高外泌体在心肌梗死中的靶向性和治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信