Positive end-expiratory pressure in the pediatric intensive care unit

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Martin C.J. Kneyber
{"title":"Positive end-expiratory pressure in the pediatric intensive care unit","authors":"Martin C.J. Kneyber","doi":"10.1016/j.prrv.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Application of positive end-expiratory pressure (PEEP) targeted towards improving oxygenation is one of the components of the ventilatory management of pediatric acute respiratory distress syndrome (PARDS). Low end-expiratory airway pressures cause repetitive opening and closure of unstable alveoli, leading to surfactant dysfunction and parenchymal shear injury. Consequently, there is less lung volume available for tidal ventilation when there are atelectatic lung regions. This will increase lung strain in aerated lung areas to which the tidal volume is preferentially distributed. Pediatric critical care practitioners tend to use low levels of PEEP and inherently accept higher FiO<sub>2</sub>, but these practices may negatively affect patient outcome. The Pediatric Acute Lung Injury Consensus Conference (PALICC) suggests that PEEP should be titrated to oxygenation/oxygen delivery, hemodynamics, and compliance measured under static conditions as compared to other clinical parameters or any of these parameters in isolation in patients with PARDS, while limiting plateau pressure and/or driving pressure limits.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1526054223000805/pdfft?md5=8a8401dcb165410bb49f999923c16c82&pid=1-s2.0-S1526054223000805-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526054223000805","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Application of positive end-expiratory pressure (PEEP) targeted towards improving oxygenation is one of the components of the ventilatory management of pediatric acute respiratory distress syndrome (PARDS). Low end-expiratory airway pressures cause repetitive opening and closure of unstable alveoli, leading to surfactant dysfunction and parenchymal shear injury. Consequently, there is less lung volume available for tidal ventilation when there are atelectatic lung regions. This will increase lung strain in aerated lung areas to which the tidal volume is preferentially distributed. Pediatric critical care practitioners tend to use low levels of PEEP and inherently accept higher FiO2, but these practices may negatively affect patient outcome. The Pediatric Acute Lung Injury Consensus Conference (PALICC) suggests that PEEP should be titrated to oxygenation/oxygen delivery, hemodynamics, and compliance measured under static conditions as compared to other clinical parameters or any of these parameters in isolation in patients with PARDS, while limiting plateau pressure and/or driving pressure limits.

在儿科重症监护病房呼气末正压。
应用呼气末正压(PEEP)改善氧合是儿科急性呼吸窘迫综合征(PARDS)通气管理的组成部分之一。低呼气末气道压力导致不稳定肺泡反复打开和关闭,导致表面活性物质功能障碍和实质剪切损伤。因此,当存在肺不电区时,可用于潮汐通气的肺容量较少。这将增加潮气量优先分布的曝气肺区肺张力。儿科危重护理从业者倾向于使用低水平的PEEP和固有地接受更高的FiO2,但这些做法可能会对患者的预后产生负面影响。儿科急性肺损伤共识会议(PALICC)建议,与PARDS患者的其他临床参数或单独的任何这些参数相比,在静态条件下测量PEEP应滴定为氧合/氧输送、血流动力学和顺应性,同时限制平台压和/或驱动压限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信