Zhansheng Lu, Bo Liu, Demiao Kong, Xiaojiang Zhou, Dengke Pei, Di Liu
{"title":"NSUN6 Regulates NM23-H1 Expression in an m5C Manner to Affect Epithelial-Mesenchymal Transition in Lung Cancer.","authors":"Zhansheng Lu, Bo Liu, Demiao Kong, Xiaojiang Zhou, Dengke Pei, Di Liu","doi":"10.1159/000535479","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The expression and regulatory mechanism of NSUN6 in lung cancer are still unclear. Our study explored whether NSUN6 mediates progression of lung cancer by affecting NM23-H1 expression in an m5C-dependent manner.</p><p><strong>Methods: </strong>qRT-PCR, CCK-8, colony formation, transwell, and Western blot analysis were employed to probe the impact of NSUN6 on lung cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT). RMVar database was utilized to forecast the downstream genes of NSUN6. The mode of interaction between NSUN6 and NM23-H1 was determined by dot blot, luciferase assay, m5C RIP, and cell function assays. The effect of NSUN6 expression on tumor growth was verified in vivo.</p><p><strong>Results: </strong>Expression of NSUN6 was reduced in lung cancer cells, and over-expression of NSUN6 restricted the proliferation of lung cancer cells, migration, and EMT. NSUN6 regulated NM23-H1 expression by modifying the 3'-UTR of NM23-H1 mRNA through m5C and inhibited lung cancer cell proliferation, migration, and EMT. In vivo experiments also showed that over-expression of NSUN6 inhibited the occurrence of lung cancer.</p><p><strong>Conclusion: </strong>NSUN6 regulates NM23-H1 expression in an m5C-dependent manner to affect EMT in lung cancer. Thus, NSUN6 may be considered as a potential therapeutic target for lung cancer.</p>","PeriodicalId":18455,"journal":{"name":"Medical Principles and Practice","volume":" ","pages":"56-65"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Principles and Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000535479","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The expression and regulatory mechanism of NSUN6 in lung cancer are still unclear. Our study explored whether NSUN6 mediates progression of lung cancer by affecting NM23-H1 expression in an m5C-dependent manner.
Methods: qRT-PCR, CCK-8, colony formation, transwell, and Western blot analysis were employed to probe the impact of NSUN6 on lung cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT). RMVar database was utilized to forecast the downstream genes of NSUN6. The mode of interaction between NSUN6 and NM23-H1 was determined by dot blot, luciferase assay, m5C RIP, and cell function assays. The effect of NSUN6 expression on tumor growth was verified in vivo.
Results: Expression of NSUN6 was reduced in lung cancer cells, and over-expression of NSUN6 restricted the proliferation of lung cancer cells, migration, and EMT. NSUN6 regulated NM23-H1 expression by modifying the 3'-UTR of NM23-H1 mRNA through m5C and inhibited lung cancer cell proliferation, migration, and EMT. In vivo experiments also showed that over-expression of NSUN6 inhibited the occurrence of lung cancer.
Conclusion: NSUN6 regulates NM23-H1 expression in an m5C-dependent manner to affect EMT in lung cancer. Thus, NSUN6 may be considered as a potential therapeutic target for lung cancer.
期刊介绍:
''Medical Principles and Practice'', as the journal of the Health Sciences Centre, Kuwait University, aims to be a publication of international repute that will be a medium for dissemination and exchange of scientific knowledge in the health sciences.