Weiheng Sun, Yue He, Yuping Deng, Yuwei Hu, Min Cao, Jie Luo
{"title":"Interaction effects of magnetized water irrigation and wounding stress on Cd phytoremediation effect of <i>Arabidopsis halleri</i>.","authors":"Weiheng Sun, Yue He, Yuping Deng, Yuwei Hu, Min Cao, Jie Luo","doi":"10.1080/15226514.2023.2288896","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the phytoremediation efficiency of <i>Arabidopsis halleri</i> L. in response to mechanical injury were compared between those irrigated with magnetized water and those irrigated with normal water. Under normal irrigation treatment, wounding stress increased malondialdehyde (MDA) concentrations and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels in <i>A. halleri</i> leaves significantly, by 46.7-86.1% and 39.4-77.4%, respectively, relative to those in the intact tissues. In addition, wounding stresses decreased the content of Cd in leaves by 26.8-52.2%, relative to the control, indicating that oxidative damage in plant tissues was induced by mechanical injury, rather than Cd accumulation. There were no significant differences in MDA and H<sub>2</sub>O<sub>2</sub> between <i>A. halleri</i> irrigated with magnetized water and with normal water under wounding conditions; however, the activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) in the leaves of plants treated with magnetized water were significantly increased by 25.1-56.7%, 47.3-183.6%, and 44.2-109.4%, respectively. Notably, under the magnetic field, the phytoremediation effect of 30% wounded <i>A. halleri</i> nearly returned to normal levels. We find that irrigation with magnetized water is an economical pathway to improve the tolerance of A. <i>halleri</i> to inevitable mechanical injury and may recover its phytoremediation effect.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1016-1026"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2023.2288896","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the phytoremediation efficiency of Arabidopsis halleri L. in response to mechanical injury were compared between those irrigated with magnetized water and those irrigated with normal water. Under normal irrigation treatment, wounding stress increased malondialdehyde (MDA) concentrations and hydrogen peroxide (H2O2) levels in A. halleri leaves significantly, by 46.7-86.1% and 39.4-77.4%, respectively, relative to those in the intact tissues. In addition, wounding stresses decreased the content of Cd in leaves by 26.8-52.2%, relative to the control, indicating that oxidative damage in plant tissues was induced by mechanical injury, rather than Cd accumulation. There were no significant differences in MDA and H2O2 between A. halleri irrigated with magnetized water and with normal water under wounding conditions; however, the activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) in the leaves of plants treated with magnetized water were significantly increased by 25.1-56.7%, 47.3-183.6%, and 44.2-109.4%, respectively. Notably, under the magnetic field, the phytoremediation effect of 30% wounded A. halleri nearly returned to normal levels. We find that irrigation with magnetized water is an economical pathway to improve the tolerance of A. halleri to inevitable mechanical injury and may recover its phytoremediation effect.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.