Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2023-05-01 Epub Date: 2023-12-26 DOI:10.1080/10715762.2023.2288997
Ghadeer Abbas, Fatemah Alibrahim, Rawan Kankouni, Sara Al-Belushi, Dalal A Al-Mutairi, Artak Tovmasyan, Ines Batinic-Haberle, Ludmil Benov
{"title":"Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins.","authors":"Ghadeer Abbas, Fatemah Alibrahim, Rawan Kankouni, Sara Al-Belushi, Dalal A Al-Mutairi, Artak Tovmasyan, Ines Batinic-Haberle, Ludmil Benov","doi":"10.1080/10715762.2023.2288997","DOIUrl":null,"url":null,"abstract":"<p><p>Coordination of metal ions by the tetrapyrrolic macrocyclic ring of porphyrin-based photosensitizers (PSs) affects their photophysical properties and consequently, their photodynamic activity. Diamagnetic metals increase the singlet oxygen quantum yield while paramagnetic metals have the opposite effect. Since singlet oxygen is considered the main cell-damaging species in photodynamic therapy (PDT), the nature of the chelated cation would directly affect PDT efficacy. This expectation, however, is not always supported by experimental results and numerous exceptions have been reported. Understanding the effect of the chelated metal is hindered because different chelators were used. The aim of this work was to investigate the effect of the nature of chelated cation on the photophysical and photodynamic properties of metalloporphyrins, using the same tetrapyrrole core as a chelator of Ag(II), Cu(II), Fe(III), In(III), Mn(III), or Zn(II). Results demonstrated that with the exception of Ag(II), all paramagnetic metalloporphyrins were inefficient as generators of singlet oxygen and did not act as PSs. In contrast, the coordination of diamagnetic ions produced highly efficient PSs. The unexpected photodynamic activity of the Ag(II)-containing porphyrin was attributed to reduction of the chelated Ag(II) to Ag(I) or to demetallation of the complex, caused by cellular reductants and/or by exposure to light. Our results indicate that in biological systems, where PSs localize to various organelles and are subjected to the action of enzymes, reactive metabolites, and reducing or oxidizing agents, their physicochemical and photosensitizing properties change. Consequently, the photophysical properties alone cannot predict the anticancer efficacy of a PS.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2023.2288997","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coordination of metal ions by the tetrapyrrolic macrocyclic ring of porphyrin-based photosensitizers (PSs) affects their photophysical properties and consequently, their photodynamic activity. Diamagnetic metals increase the singlet oxygen quantum yield while paramagnetic metals have the opposite effect. Since singlet oxygen is considered the main cell-damaging species in photodynamic therapy (PDT), the nature of the chelated cation would directly affect PDT efficacy. This expectation, however, is not always supported by experimental results and numerous exceptions have been reported. Understanding the effect of the chelated metal is hindered because different chelators were used. The aim of this work was to investigate the effect of the nature of chelated cation on the photophysical and photodynamic properties of metalloporphyrins, using the same tetrapyrrole core as a chelator of Ag(II), Cu(II), Fe(III), In(III), Mn(III), or Zn(II). Results demonstrated that with the exception of Ag(II), all paramagnetic metalloporphyrins were inefficient as generators of singlet oxygen and did not act as PSs. In contrast, the coordination of diamagnetic ions produced highly efficient PSs. The unexpected photodynamic activity of the Ag(II)-containing porphyrin was attributed to reduction of the chelated Ag(II) to Ag(I) or to demetallation of the complex, caused by cellular reductants and/or by exposure to light. Our results indicate that in biological systems, where PSs localize to various organelles and are subjected to the action of enzymes, reactive metabolites, and reducing or oxidizing agents, their physicochemical and photosensitizing properties change. Consequently, the photophysical properties alone cannot predict the anticancer efficacy of a PS.

螯合金属的性质对金属卟啉光动力学活性的影响。
卟啉类光敏剂的四吡啶环对金属离子的配位影响其光物理性质,从而影响其光动力学活性。抗磁性金属提高单线态氧量子产率,顺磁性金属则相反。由于单线态氧被认为是光动力治疗(PDT)中主要的细胞损伤物质,螯合阳离子的性质将直接影响光动力治疗的效果。然而,这种期望并不总是得到实验结果的支持,并且报道了许多例外情况。由于使用了不同的螯合剂,对螯合金属的效果的理解受到阻碍。这项工作的目的是研究螯合阳离子的性质对金属卟啉的光物理和光动力学性质的影响,使用相同的四吡啶核作为Ag(II), Cu(II), Fe(III), In(III), Mn(III)或Zn(II)的螯合剂。结果表明,除Ag(II)外,所有顺磁性金属卟啉都不能作为单重态氧的发生器,也不能作为ps。相反,抗磁性离子的配位产生了高效的ps。含Ag(II)卟啉的意外光动力学活性归因于螯合Ag(II)还原为Ag(I)或由细胞还原剂和/或暴露于光下引起的络合物的脱金属。我们的研究结果表明,在生物系统中,当ps定位于各种细胞器并受到酶、活性代谢物、还原剂或氧化剂的作用时,它们的物理化学和光敏性会发生变化。因此,光物理性质不能单独预测PS的抗癌功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信