Keisuke Ikawa, Souta Hiro, Shu Kondo, Shizue Ohsawa, Kaoru Sugimura
{"title":"Coronin-1 promotes directional cell rearrangement in Drosophila wing epithelium.","authors":"Keisuke Ikawa, Souta Hiro, Shu Kondo, Shizue Ohsawa, Kaoru Sugimura","doi":"10.1247/csf.23049","DOIUrl":null,"url":null,"abstract":"<p><p>Directional cell rearrangement is a critical process underlying correct tissue deformation during morphogenesis. Although the involvement of F-actin regulation in cell rearrangement has been established, the role and regulation of actin binding proteins (ABPs) in this process are not well understood. In this study, we investigated the function of Coronin-1, a WD-repeat actin-binding protein, in controlling directional cell rearrangement in the Drosophila pupal wing. Transgenic flies expressing Coronin-1-EGFP were generated using CRISPR-Cas9. We observed that Coronin-1 localizes at the reconnecting junction during cell rearrangement, which is dependent on actin interacting protein 1 (AIP1) and cofilin, actin disassemblers and known regulators of wing cell rearrangement. Loss of Coronin-1 function reduces cell rearrangement directionality and hexagonal cell fraction. These results suggest that Coronin-1 promotes directional cell rearrangement via its interaction with AIP1 and cofilin, highlighting the role of ABPs in the complex process of morphogenesis.Key words: morphogenesis, cell rearrangement, actin binding proteins (ABPs).</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"251-257"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.23049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Directional cell rearrangement is a critical process underlying correct tissue deformation during morphogenesis. Although the involvement of F-actin regulation in cell rearrangement has been established, the role and regulation of actin binding proteins (ABPs) in this process are not well understood. In this study, we investigated the function of Coronin-1, a WD-repeat actin-binding protein, in controlling directional cell rearrangement in the Drosophila pupal wing. Transgenic flies expressing Coronin-1-EGFP were generated using CRISPR-Cas9. We observed that Coronin-1 localizes at the reconnecting junction during cell rearrangement, which is dependent on actin interacting protein 1 (AIP1) and cofilin, actin disassemblers and known regulators of wing cell rearrangement. Loss of Coronin-1 function reduces cell rearrangement directionality and hexagonal cell fraction. These results suggest that Coronin-1 promotes directional cell rearrangement via its interaction with AIP1 and cofilin, highlighting the role of ABPs in the complex process of morphogenesis.Key words: morphogenesis, cell rearrangement, actin binding proteins (ABPs).
期刊介绍:
Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print.
Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.