Regulated necrosis pathways: a potential target for ischemic stroke.

IF 6.3 1区 医学 Q1 DERMATOLOGY
Burns & Trauma Pub Date : 2023-11-18 eCollection Date: 2023-01-01 DOI:10.1093/burnst/tkad016
Kaidi Ren, Jinyan Pei, Yuanyuan Guo, Yuxue Jiao, Han Xing, Yi Xie, Yang Yang, Qi Feng, Jing Yang
{"title":"Regulated necrosis pathways: a potential target for ischemic stroke.","authors":"Kaidi Ren, Jinyan Pei, Yuanyuan Guo, Yuxue Jiao, Han Xing, Yi Xie, Yang Yang, Qi Feng, Jing Yang","doi":"10.1093/burnst/tkad016","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkad016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.

受调节的坏死途径:缺血性卒中的潜在靶点。
在全球范围内,缺血性中风每年造成数百万人死亡。缺血性脑卒中的预后在很大程度上取决于梗死区缺血相关和再灌注相关神经元死亡的数量。在梗死区,细胞损伤要么遵循包括精确信号级联的调控途径,如凋亡和自噬,要么遵循不受任何分子效应机制(如坏死)控制的非调控途径。然而,最近大量研究发现,某种类型的坏死可以被药物调节和潜在地修饰,并且是非凋亡性的;这种类型的坏死被称为调节性坏死。根据信号通路的不同,各种受调控的坏死因子参与缺血性卒中的发展,如坏死性坏死、焦性坏死、铁性坏死、病理坏死、线粒体通透性转移、孔介导的坏死和肿瘤。在本文中,我们旨在总结缺血性脑卒中中调控性坏死的潜在分子机制,并探讨不同类型的调控性坏死之间的相互作用。我们认为,在缺血诱导的神经元死亡和保护中,从药理学和遗传学上靶向这些受调节的坏死途径可能是增加缺血性卒中中神经元存活和再生的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信