{"title":"Gas transport mechanisms through gas-permeable membranes in microfluidics: A perspective.","authors":"Sangjin Seo, Taesung Kim","doi":"10.1063/5.0169555","DOIUrl":null,"url":null,"abstract":"<p><p>Gas-permeable membranes (GPMs) and membrane-like micro-/nanostructures offer precise control over the transport of liquids, gases, and small molecules on microchips, which has led to the possibility of diverse applications, such as gas sensors, solution concentrators, and mixture separators. With the escalating demand for GPMs in microfluidics, this Perspective article aims to comprehensively categorize the transport mechanisms of gases through GPMs based on the penetrant type and the transport direction. We also provide a comprehensive review of recent advancements in GPM-integrated microfluidic devices, provide an overview of the fundamental mechanisms underlying gas transport through GPMs, and present future perspectives on the integration of GPMs in microfluidics. Furthermore, we address the current challenges associated with GPMs and GPM-integrated microfluidic devices, taking into consideration the intrinsic material properties and capabilities of GPMs. By tackling these challenges head-on, we believe that our perspectives can catalyze innovative advancements and help meet the evolving demands of microfluidic applications.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0169555","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gas-permeable membranes (GPMs) and membrane-like micro-/nanostructures offer precise control over the transport of liquids, gases, and small molecules on microchips, which has led to the possibility of diverse applications, such as gas sensors, solution concentrators, and mixture separators. With the escalating demand for GPMs in microfluidics, this Perspective article aims to comprehensively categorize the transport mechanisms of gases through GPMs based on the penetrant type and the transport direction. We also provide a comprehensive review of recent advancements in GPM-integrated microfluidic devices, provide an overview of the fundamental mechanisms underlying gas transport through GPMs, and present future perspectives on the integration of GPMs in microfluidics. Furthermore, we address the current challenges associated with GPMs and GPM-integrated microfluidic devices, taking into consideration the intrinsic material properties and capabilities of GPMs. By tackling these challenges head-on, we believe that our perspectives can catalyze innovative advancements and help meet the evolving demands of microfluidic applications.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...