Hitting all maximum stable sets in P5-free graphs

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sepehr Hajebi , Yanjia Li , Sophie Spirkl
{"title":"Hitting all maximum stable sets in P5-free graphs","authors":"Sepehr Hajebi ,&nbsp;Yanjia Li ,&nbsp;Sophie Spirkl","doi":"10.1016/j.jctb.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span><span>-free graph of bounded clique number contains a small hitting set of all its maximum stable sets (where </span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denotes the <em>t</em>-vertex path, and for graphs <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span>, we say <em>G</em> is <em>H-free</em><span> if no induced subgraph of </span><em>G</em> is isomorphic to <em>H</em>).</p><p>More generally, let us say a class <span><math><mi>C</mi></math></span> of graphs is <em>η-bounded</em> if there exists a function <span><math><mi>h</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>h</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> for every graph <span><math><mi>G</mi><mo>∈</mo><mi>C</mi></math></span>, where <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes smallest cardinality of a hitting set of all maximum stable sets in <em>G</em>, and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the clique number of <em>G</em>. Also, <span><math><mi>C</mi></math></span> is said to be <em>polynomially η-bounded</em> if in addition <em>h</em> can be chosen to be a polynomial.</p><p>We introduce <em>η</em>-boundedness inspired by a question of Alon (asking how large <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> can be for a 3-colourable graph <em>G</em>), and motivated by a number of meaningful similarities to <em>χ</em>-boundedness, namely,</p><ul><li><span>•</span><span><p>given a graph <em>G</em>, we have <span><math><mi>η</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em> if and only if <em>G</em> is perfect;</p></span></li><li><span>•</span><span><p>there are graphs <em>G</em> with both <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and the girth of <em>G</em> arbitrarily large; and</p></span></li><li><span>•</span><span><p>if <span><math><mi>C</mi></math></span> is a hereditary class of graphs which is polynomially <em>η</em>-bounded, then <span><math><mi>C</mi></math></span> satisfies the Erdős-Hajnal conjecture.</p></span></li></ul> The second bullet above in particular suggests an analogue of the Gyárfás-Sumner conjecture, that the class of all <em>H</em>-free graphs is <em>η</em>-bounded if (and only if) <em>H</em> is a forest. Like <em>χ</em>-boundedness, the case where <em>H</em> is a star is easy to verify, and we prove two non-trivial extensions of this: <em>H</em>-free graphs are <em>η</em>-bounded if (1) <em>H</em> has a vertex incident with all edges of <em>H</em>, or (2) <em>H</em> can be obtained from a star by subdividing at most one edge, exactly once.<p>Unlike <em>χ</em>-boundedness, the case where <em>H</em> is a path is surprisingly hard. Our main result mentioned at the beginning shows that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs are <em>η</em>-bounded. The proof is rather involved compared to the classical “Gyárfás path” argument which establishes, for all <em>t</em>, the <em>χ</em>-boundedness of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-free graphs. It remains open whether <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-free graphs are <em>η</em>-bounded for <span><math><mi>t</mi><mo>≥</mo><mn>6</mn></math></span>.</p><p>It also remains open whether <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs are polynomially <em>η</em>-bounded, which, if true, would imply the Erdős-Hajnal conjecture for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs. But we prove that <em>H</em>-free graphs are polynomially <em>η</em>-bounded if <em>H</em> is a proper induced subgraph of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. We further generalize the case where <em>H</em> is a 1-regular graph on four vertices, showing that <em>H</em>-free graphs are polynomially <em>η</em>-bounded if <em>H</em> is a forest with no vertex of degree more than one and at most four vertices of degree one.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000990","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

We prove that every P5-free graph of bounded clique number contains a small hitting set of all its maximum stable sets (where Pt denotes the t-vertex path, and for graphs G,H, we say G is H-free if no induced subgraph of G is isomorphic to H).

More generally, let us say a class C of graphs is η-bounded if there exists a function h:NN such that η(G)h(ω(G)) for every graph GC, where η(G) denotes smallest cardinality of a hitting set of all maximum stable sets in G, and ω(G) is the clique number of G. Also, C is said to be polynomially η-bounded if in addition h can be chosen to be a polynomial.

We introduce η-boundedness inspired by a question of Alon (asking how large η(G) can be for a 3-colourable graph G), and motivated by a number of meaningful similarities to χ-boundedness, namely,

  • given a graph G, we have η(H)ω(H) for every induced subgraph H of G if and only if G is perfect;

  • there are graphs G with both η(G) and the girth of G arbitrarily large; and

  • if C is a hereditary class of graphs which is polynomially η-bounded, then C satisfies the Erdős-Hajnal conjecture.

The second bullet above in particular suggests an analogue of the Gyárfás-Sumner conjecture, that the class of all H-free graphs is η-bounded if (and only if) H is a forest. Like χ-boundedness, the case where H is a star is easy to verify, and we prove two non-trivial extensions of this: H-free graphs are η-bounded if (1) H has a vertex incident with all edges of H, or (2) H can be obtained from a star by subdividing at most one edge, exactly once.

Unlike χ-boundedness, the case where H is a path is surprisingly hard. Our main result mentioned at the beginning shows that P5-free graphs are η-bounded. The proof is rather involved compared to the classical “Gyárfás path” argument which establishes, for all t, the χ-boundedness of Pt-free graphs. It remains open whether Pt-free graphs are η-bounded for t6.

It also remains open whether P5-free graphs are polynomially η-bounded, which, if true, would imply the Erdős-Hajnal conjecture for P5-free graphs. But we prove that H-free graphs are polynomially η-bounded if H is a proper induced subgraph of P5. We further generalize the case where H is a 1-regular graph on four vertices, showing that H-free graphs are polynomially η-bounded if H is a forest with no vertex of degree more than one and at most four vertices of degree one.

在P5-free图中命中所有最大稳定集
我们每P5-free图证明有界集团包含一个小的数量集的最大稳定集(Pt表示t-vertex路径,图G, H,我们说G H-free如果没有诱导子图G的同构H)更普遍,我们说一个C类图表的η界:如果存在一个函数H N→N,η(G)≤H(ω(G))为每一个图G∈C,η(G)表示的最小基数达到设定的最大稳定集G,ω(G)是G的团数。另外,如果h可以被选为多项式,则C是多项式η有界的。我们引入η有界性,灵感来自于一个Alon问题(问一个3色图G的η(G)有多大),并受到一些与χ有界性有意义的相似性的启发,即:•给定一个图G,当且仅当G是完美的,我们有η(H)≤ω(H)对于G的每个诱导子图H;•如果C是一个多项式η有界图的遗传类,则C满足Erdős-Hajnal猜想。上面的第二个项目特别提出了Gyárfás-Sumner猜想的一个类比,即当(且仅当)H是森林时,所有无H图的类是η有界的。像χ-有界性一样,H是星的情况很容易验证,并且我们证明了它的两个非平凡扩展:如果(1)H与H的所有边都有一个顶点事件,或者(2)H可以通过最多细分一条边(恰好一次)从一个星得到,则无H图是η-有界的。与χ有界性不同,H是一条路径的情况非常困难。我们在开头提到的主要结果表明无p5图是η有界的。与经典的“Gyárfás路径”论证相比,这个证明是相当复杂的,对于所有t,它建立了无pt图的χ有界性。当t≥6时,无pt图是否η有界仍然是开放的。P5-free图是否多项式η有界仍然是开放的,如果这是真的,将意味着P5-free图的Erdős-Hajnal猜想。但我们证明了如果H是P5的适当诱导子图,则无H图是多项式η有界的。我们进一步推广了H是一个有四个顶点的1正则图的情况,证明了如果H是一个没有超过1次顶点且最多有四个1次顶点的森林,则无H图是多项式η有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信