An examination and prospect of stabilizing Li metal anode in lithium–sulfur batteries: A review of latest progress

Electron Pub Date : 2023-11-28 DOI:10.1002/elt2.13
Bingyan Song, Laisuo Su, Xi Liu, Wanjie Gao, Tao Wang, Yuan Ma, Yiren Zhong, Xin-Bing Cheng, Zhi Zhu, Jiarui He, Yuping Wu
{"title":"An examination and prospect of stabilizing Li metal anode in lithium–sulfur batteries: A review of latest progress","authors":"Bingyan Song,&nbsp;Laisuo Su,&nbsp;Xi Liu,&nbsp;Wanjie Gao,&nbsp;Tao Wang,&nbsp;Yuan Ma,&nbsp;Yiren Zhong,&nbsp;Xin-Bing Cheng,&nbsp;Zhi Zhu,&nbsp;Jiarui He,&nbsp;Yuping Wu","doi":"10.1002/elt2.13","DOIUrl":null,"url":null,"abstract":"<p>The Li metal anode emerges as a formidable competitor among anode materials for lithium–sulfur (Li-S) batteries; nevertheless, safety issues pose a significant hurdle in its path toward commercial viability. This review enumerates three historical challenges inherent to the Li metal anode: unavoidable volume expansion, multifunctional solid electrolyte interface formation, and uncontrollable lithium dendrite growth. In particular, when paired with a sulfur cathode, the Li anode presents an additional unique hurdle: the shuttle effect. To address these issues, this article offers a thorough examination of the latest innovations aimed at stabilizing the Li metal anode within Li-S batteries. We categorize these approaches into five classifications: liquid electrolyte optimization, enhancement of non-liquid-state electrolytes, Li metal surface modification, Li anode architecture design, and Li alloy improvement. For several noteworthy results within these categories, we have compiled their electrochemical performance into tables, facilitating direct comparison. This detailed analysis illuminates feasible strategies and suggests directions warranting further exploration for optimizing the capability and safety of Li metal anodes in Li-S batteries.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.13","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Li metal anode emerges as a formidable competitor among anode materials for lithium–sulfur (Li-S) batteries; nevertheless, safety issues pose a significant hurdle in its path toward commercial viability. This review enumerates three historical challenges inherent to the Li metal anode: unavoidable volume expansion, multifunctional solid electrolyte interface formation, and uncontrollable lithium dendrite growth. In particular, when paired with a sulfur cathode, the Li anode presents an additional unique hurdle: the shuttle effect. To address these issues, this article offers a thorough examination of the latest innovations aimed at stabilizing the Li metal anode within Li-S batteries. We categorize these approaches into five classifications: liquid electrolyte optimization, enhancement of non-liquid-state electrolytes, Li metal surface modification, Li anode architecture design, and Li alloy improvement. For several noteworthy results within these categories, we have compiled their electrochemical performance into tables, facilitating direct comparison. This detailed analysis illuminates feasible strategies and suggests directions warranting further exploration for optimizing the capability and safety of Li metal anodes in Li-S batteries.

Abstract Image

锂硫电池中稳定锂金属阳极的研究与展望:最新进展综述
锂金属负极是锂硫电池负极材料中一个强有力的竞争者;然而,安全问题在其商业可行性的道路上构成了重大障碍。这篇综述列举了锂金属阳极固有的三个历史挑战:不可避免的体积膨胀,多功能固体电解质界面的形成,以及不可控的锂枝晶生长。特别是,当与硫阴极配对时,锂阳极呈现出额外的独特障碍:穿梭效应。为了解决这些问题,本文提供了旨在稳定锂电池内锂金属阳极的最新创新的彻底检查。我们将这些方法分为五类:液体电解质优化、非液态电解质增强、锂金属表面改性、锂阳极结构设计和锂合金改进。对于这些类别中几个值得注意的结果,我们将它们的电化学性能汇编成表格,便于直接比较。详细的分析阐明了可行的策略,并提出了进一步探索优化锂硫电池锂金属阳极性能和安全性的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信