Angle-dependent light scattering in tissue phantoms for the case of thin bone layers with predominant forward scattering

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Tom Witke, Eduard Kuhn, Fabian Teichert, Christian Goßler, Ulrich Theodor Schwarz, Angela Thränhardt
{"title":"Angle-dependent light scattering in tissue phantoms for the case of thin bone layers with predominant forward scattering","authors":"Tom Witke,&nbsp;Eduard Kuhn,&nbsp;Fabian Teichert,&nbsp;Christian Goßler,&nbsp;Ulrich Theodor Schwarz,&nbsp;Angela Thränhardt","doi":"10.1002/jbio.202300358","DOIUrl":null,"url":null,"abstract":"<p>The cochlea forms a key element of the human auditory system in the temporal bone. Damage to the cochlea continues to produce significant impairment for sensory reception of environmental stimuli. To improve this impairment, the optical cochlear implant forms a new research approach. A prerequisite for this method is to understand how light propagation, as well as scattering, reflection, and absorption, takes place within the cochlea. We offer a method to study the light distribution in the human cochlea through phantom materials which have the objective to mimic the optical behavior of bone and Monte-Carlo simulations. The calculation of an angular distribution after scattering requires a phase function. Often approximate functions like Henyey–Greenstein, two-term Henyey–Greenstein or Legendre polynomial decompositions are used as phase function. An alternative is to exactly calculate a Mie distribution for each scattering event. This method provides a better fit to the data measured in this work.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202300358","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300358","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The cochlea forms a key element of the human auditory system in the temporal bone. Damage to the cochlea continues to produce significant impairment for sensory reception of environmental stimuli. To improve this impairment, the optical cochlear implant forms a new research approach. A prerequisite for this method is to understand how light propagation, as well as scattering, reflection, and absorption, takes place within the cochlea. We offer a method to study the light distribution in the human cochlea through phantom materials which have the objective to mimic the optical behavior of bone and Monte-Carlo simulations. The calculation of an angular distribution after scattering requires a phase function. Often approximate functions like Henyey–Greenstein, two-term Henyey–Greenstein or Legendre polynomial decompositions are used as phase function. An alternative is to exactly calculate a Mie distribution for each scattering event. This method provides a better fit to the data measured in this work.

Abstract Image

以前向散射为主的薄骨层在组织幻象中的角度依赖光散射。
耳蜗是颞骨中人类听觉系统的重要组成部分。耳蜗的损伤继续对环境刺激的感觉接收产生重大损害。为了改善这种缺陷,光学人工耳蜗形成了一种新的研究途径。这种方法的先决条件是了解光的传播、散射、反射和吸收是如何在耳蜗内发生的。我们提出了一种通过模拟骨光学行为的模拟材料和蒙特卡罗模拟来研究人耳蜗内光分布的方法。计算散射后的角分布需要一个相函数。通常近似函数如Henyey-Greenstein,两项Henyey-Greenstein或Legendre多项式分解被用作相函数。另一种方法是精确地计算每个散射事件的米氏分布。该方法能更好地拟合本工作中测量的数据。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信