Rajveer K Shastri, Aparna R Shastri, Prashant P Nitnaware, Digambar M Padulkar
{"title":"Hybrid Sneaky algorithm-based deep neural networks for Heart sound classification using phonocardiogram.","authors":"Rajveer K Shastri, Aparna R Shastri, Prashant P Nitnaware, Digambar M Padulkar","doi":"10.1080/0954898X.2023.2270040","DOIUrl":null,"url":null,"abstract":"<p><p>In the diagnosis of cardiac disorders Heart sound has a major role, and early detection is crucial to safeguard the patients. Computerized strategies of heart sound classification advocate intensive and more exact results in a quick and better manner. <u>U</u>sing a hybrid optimization-controlled deep learning strategy this paper proposed an automatic heart sound classification module. The parameter tuning of the Deep Neural Network (DNN) classifier in a satisfactory manner is the importance of this research which depends on the Hybrid Sneaky optimization algorithm. The developed sneaky optimization algorithm inherits the traits of questing and societal search agents. Moreover, input data from the Phonocardiogram (PCG) database undergoes the process of feature extraction which extract the important features, like statistical, Heart Rate Variability (HRV), and to enhance the performance of this model, the features of Mel frequency Cepstral coefficients (MFCC) are assisted. The developed Sneaky optimization-based DNN classifier's performance is determined in respect of the metrics, namely precision, accuracy, specificity, and sensitivity, which are around 97%, 96.98%, 97%, and 96.9%, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-26"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2270040","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the diagnosis of cardiac disorders Heart sound has a major role, and early detection is crucial to safeguard the patients. Computerized strategies of heart sound classification advocate intensive and more exact results in a quick and better manner. Using a hybrid optimization-controlled deep learning strategy this paper proposed an automatic heart sound classification module. The parameter tuning of the Deep Neural Network (DNN) classifier in a satisfactory manner is the importance of this research which depends on the Hybrid Sneaky optimization algorithm. The developed sneaky optimization algorithm inherits the traits of questing and societal search agents. Moreover, input data from the Phonocardiogram (PCG) database undergoes the process of feature extraction which extract the important features, like statistical, Heart Rate Variability (HRV), and to enhance the performance of this model, the features of Mel frequency Cepstral coefficients (MFCC) are assisted. The developed Sneaky optimization-based DNN classifier's performance is determined in respect of the metrics, namely precision, accuracy, specificity, and sensitivity, which are around 97%, 96.98%, 97%, and 96.9%, respectively.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.