Dynamics of Microbial Community Structure, Function and Assembly Mechanism with Increasing Stand Age of Slash Pine (Pinus elliottii) Plantations in Houtian Sandy Area, South China.

IF 3.3 4区 生物学 Q2 MICROBIOLOGY
Journal of Microbiology Pub Date : 2023-11-01 Epub Date: 2023-11-29 DOI:10.1007/s12275-023-00089-7
Xiaoyang Zhang, Si-Yi Xiong, Xiukun Wu, Bei-Bei Zeng, Yang-Mei Mo, Zhi-Cheng Deng, Qi Wei, Yang Gao, Licao Cui, Jianping Liu, Haozhi Long
{"title":"Dynamics of Microbial Community Structure, Function and Assembly Mechanism with Increasing Stand Age of Slash Pine (Pinus elliottii) Plantations in Houtian Sandy Area, South China.","authors":"Xiaoyang Zhang, Si-Yi Xiong, Xiukun Wu, Bei-Bei Zeng, Yang-Mei Mo, Zhi-Cheng Deng, Qi Wei, Yang Gao, Licao Cui, Jianping Liu, Haozhi Long","doi":"10.1007/s12275-023-00089-7","DOIUrl":null,"url":null,"abstract":"<p><p>Establishing slash pine plantations is the primary method for restoring sandification land in the Houtian area of South China. However, the microbial variation pattern with increasing stand age remains unclear. In this study, we investigated microbial community structure and function in bare sandy land and four stand age gradients, exploring ecological processes that determine their assembly. We did not observe a significant increase in the absolute abundance of bacteria or fungi with stand age. Bacterial communities were dominated by Chloroflexi, Actinobacteria, Proteobacteria, and Acidobacteria; the relative abundance of Chloroflexi significantly declined while Proteobacteria and Acidobacteria significantly increased with stand age. Fungal communities showed succession at the genus level, with Pisolithus most abundant in soils of younger stands (1- and 6-year-old). Turnover of fungal communities was primarily driven by stochastic processes; both deterministic and stochastic processes influenced the assembly of bacterial communities, with the relative importance of stochastic processes gradually increasing with stand age. Bacterial and fungal communities showed the strongest correlation with the diameter at breast height, followed by soil available phosphorus and water content. Notably, there was a significant increase in the relative abundance of functional groups involved in nitrogen fixation and uptake as stand age increased. Overall, this study highlights the important effects of slash pine stand age on microbial communities in sandy lands and suggests attention to the nitrogen and phosphorus requirements of slash pine plantations in the later stages of sandy management.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"953-966"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-023-00089-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing slash pine plantations is the primary method for restoring sandification land in the Houtian area of South China. However, the microbial variation pattern with increasing stand age remains unclear. In this study, we investigated microbial community structure and function in bare sandy land and four stand age gradients, exploring ecological processes that determine their assembly. We did not observe a significant increase in the absolute abundance of bacteria or fungi with stand age. Bacterial communities were dominated by Chloroflexi, Actinobacteria, Proteobacteria, and Acidobacteria; the relative abundance of Chloroflexi significantly declined while Proteobacteria and Acidobacteria significantly increased with stand age. Fungal communities showed succession at the genus level, with Pisolithus most abundant in soils of younger stands (1- and 6-year-old). Turnover of fungal communities was primarily driven by stochastic processes; both deterministic and stochastic processes influenced the assembly of bacterial communities, with the relative importance of stochastic processes gradually increasing with stand age. Bacterial and fungal communities showed the strongest correlation with the diameter at breast height, followed by soil available phosphorus and water content. Notably, there was a significant increase in the relative abundance of functional groups involved in nitrogen fixation and uptake as stand age increased. Overall, this study highlights the important effects of slash pine stand age on microbial communities in sandy lands and suggests attention to the nitrogen and phosphorus requirements of slash pine plantations in the later stages of sandy management.

Abstract Image

后田沙地湿地松(Pinus elliottii)人工林微生物群落结构、功能及聚集机制随林龄增长的动态变化
建立湿地松人工林是华南后田地区恢复沙化土地的主要方法。然而,随着林龄的增加,微生物的变化模式尚不清楚。本研究通过对4种林龄梯度下裸地沙地微生物群落结构和功能的研究,探讨了决定其组合的生态过程。我们没有观察到细菌或真菌的绝对丰度随着林龄的增加而显著增加。细菌群落以Chloroflexi、放线菌门(Actinobacteria)、变形菌门(Proteobacteria)和酸性菌门(Acidobacteria)为主;随着林龄的增长,绿氟菌的相对丰度显著下降,而变形菌门和酸性菌门的相对丰度显著增加。真菌群落在属水平上呈演替趋势,在幼龄林分(1 ~ 6年生)土壤中最丰富。真菌群落更替主要受随机过程驱动;确定性过程和随机过程都影响细菌群落的聚集,随机过程的相对重要性随着林龄的增加而逐渐增加。细菌和真菌群落与胸高直径的相关性最强,其次是土壤有效磷和含水量。值得注意的是,随着林龄的增加,参与固氮和吸收的官能团的相对丰度显著增加。总体而言,本研究强调了湿地松林龄对沙地微生物群落的重要影响,并建议在沙质管理后期关注湿地松人工林的氮磷需要量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microbiology
Journal of Microbiology 生物-微生物学
CiteScore
5.70
自引率
3.30%
发文量
0
审稿时长
3 months
期刊介绍: Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信