Acceptance Testing of Used Cascade Impactor Stages Based on Pressure Drop Measurements in a Flow System Managed with a Critical Flow Venturi: Part II-Quantification of the Test Uncertainty Ratio for Pass/Fail Decision-Making under Pharmacopeial Constraints.
{"title":"Acceptance Testing of Used Cascade Impactor Stages Based on Pressure Drop Measurements in a Flow System Managed with a Critical Flow Venturi: Part II-Quantification of the Test Uncertainty Ratio for Pass/Fail Decision-Making under Pharmacopeial Constraints.","authors":"Daryl L Roberts","doi":"10.1089/jamp.2023.0036","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> The pressure drop at any cascade impactor stage is related to the open area of nozzles at that stage. Pressure drop measurement therefore can potentially test whether the nozzles of a given stage are within the range specified for continued use for testing of inhalable drug products. Previous such efforts, however, have been hindered by the measurement precision required for making a pass/fail decision about these used impactors. In this study, we articulate the error analysis for a pressure drop measurement system managed with a critical flow venturi (CFV) and show that the resultant uncertainty in the effective diameter of used Next Generation Impactor (NGI) and Andersen-type impactor stages is generally small compared to the specification range. This result enables the user to make a pass/fail decision regarding suitability for continued use. <b><i>Methods:</i></b> We develop the equations governing the relationship between stage pressure drop and the effective diameter of each stage of a used impactor. These equations show that pressure drop measurements can indicate only the change (if any) in the effective diameter between a previous measurement and the current measurement. Propagation-of-error principles therefore show that the uncertainty of both measurements affects the resulting uncertainty. <b><i>Results:</i></b> The test uncertainty ratio (analytical power) of a CFV-managed pressure drop measurement system exceeds six for all but stage one of the NGI and for stages -1 and -2 of the Andersen-type impactor. The stage-one nozzle of the NGI is readily qualified with a Class X pin. <b><i>Conclusions:</i></b> The CFV-managed flow system described in Part I is sufficiently precise to enable a decision to be made about whether used impactor nozzles are suitable for continued use for testing of registered inhalable drug products. Examination of the industrial viability of the technology will require long-term testing in real-world settings with comparison to optical inspection methods.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":"11-18"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2023.0036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The pressure drop at any cascade impactor stage is related to the open area of nozzles at that stage. Pressure drop measurement therefore can potentially test whether the nozzles of a given stage are within the range specified for continued use for testing of inhalable drug products. Previous such efforts, however, have been hindered by the measurement precision required for making a pass/fail decision about these used impactors. In this study, we articulate the error analysis for a pressure drop measurement system managed with a critical flow venturi (CFV) and show that the resultant uncertainty in the effective diameter of used Next Generation Impactor (NGI) and Andersen-type impactor stages is generally small compared to the specification range. This result enables the user to make a pass/fail decision regarding suitability for continued use. Methods: We develop the equations governing the relationship between stage pressure drop and the effective diameter of each stage of a used impactor. These equations show that pressure drop measurements can indicate only the change (if any) in the effective diameter between a previous measurement and the current measurement. Propagation-of-error principles therefore show that the uncertainty of both measurements affects the resulting uncertainty. Results: The test uncertainty ratio (analytical power) of a CFV-managed pressure drop measurement system exceeds six for all but stage one of the NGI and for stages -1 and -2 of the Andersen-type impactor. The stage-one nozzle of the NGI is readily qualified with a Class X pin. Conclusions: The CFV-managed flow system described in Part I is sufficiently precise to enable a decision to be made about whether used impactor nozzles are suitable for continued use for testing of registered inhalable drug products. Examination of the industrial viability of the technology will require long-term testing in real-world settings with comparison to optical inspection methods.
期刊介绍:
Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient.
Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes:
Pulmonary drug delivery
Airway reactivity and asthma treatment
Inhalation of particles and gases in the respiratory tract
Toxic effects of inhaled agents
Aerosols as tools for studying basic physiologic phenomena.