Nathan P Fackler, Ryan P Donahue, Benjamin J Bielajew, Arya Amirhekmat, Jerry C Hu, Kyriacos A Athanasiou, Dean Wang
{"title":"Characterization of the Age-Related Differences in Porcine Acetabulum and Femoral Head Articular Cartilage.","authors":"Nathan P Fackler, Ryan P Donahue, Benjamin J Bielajew, Arya Amirhekmat, Jerry C Hu, Kyriacos A Athanasiou, Dean Wang","doi":"10.1177/19476035231214724","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveThe use of porcine animal models for cartilage injury has increased recently due to their similarity with humans with regard to cartilage thickness, limited intrinsic healing of chondral defects, and joint loading biomechanics. However, variations in the mechanical and biochemical properties of porcine hip articular cartilage among various tissue ages and weightbearing (WB) regions are still unknown. This study's aim was to characterize the mechanical and biochemical properties of porcine hip articular cartilage across various ages and WB regions.MethodsArticular cartilage explants were harvested from WB and non-weightbearing (NWB) surfaces of the femoral head and acetabulum of domesticated pigs (<i>Sus scrofa domesticus</i>) at fetal (gestational age: 80 days), juvenile (6 months), and adult (2 years) ages. Explants underwent compressive stress-relaxation mechanical testing, biochemical analysis for total collagen and glycosaminoglycan (GAG) content, and histological staining.ResultsJuvenile animals consistently had the highest mechanical properties, with 2.2- to 7.6-time increases in relaxation modulus, 1.3- to 2.3-time increases in instantaneous modulus, and 4.1- to 14.2-time increases in viscosity compared with fetal cartilage. Mechanical properties did not significantly differ between the WB and NWB regions. Collagen content was highest in the NWB regions of the juvenile acetabulum (65.3%/dry weight [DW]) and femoral head (75.4%/DW) cartilages. GAG content was highest in the WB region of the juvenile acetabulum (23.7%/DW) and the WB region of the fetal femoral head (27.5%/DW) cartilages. Histological staining for GAG and total collagen content followed the trends from the quantitative biochemical assays.ConclusionThis study provides a benchmark for the development and validation of preclinical porcine models for hip cartilage pathologies.</p>","PeriodicalId":9626,"journal":{"name":"CARTILAGE","volume":" ","pages":"366-375"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CARTILAGE","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19476035231214724","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveThe use of porcine animal models for cartilage injury has increased recently due to their similarity with humans with regard to cartilage thickness, limited intrinsic healing of chondral defects, and joint loading biomechanics. However, variations in the mechanical and biochemical properties of porcine hip articular cartilage among various tissue ages and weightbearing (WB) regions are still unknown. This study's aim was to characterize the mechanical and biochemical properties of porcine hip articular cartilage across various ages and WB regions.MethodsArticular cartilage explants were harvested from WB and non-weightbearing (NWB) surfaces of the femoral head and acetabulum of domesticated pigs (Sus scrofa domesticus) at fetal (gestational age: 80 days), juvenile (6 months), and adult (2 years) ages. Explants underwent compressive stress-relaxation mechanical testing, biochemical analysis for total collagen and glycosaminoglycan (GAG) content, and histological staining.ResultsJuvenile animals consistently had the highest mechanical properties, with 2.2- to 7.6-time increases in relaxation modulus, 1.3- to 2.3-time increases in instantaneous modulus, and 4.1- to 14.2-time increases in viscosity compared with fetal cartilage. Mechanical properties did not significantly differ between the WB and NWB regions. Collagen content was highest in the NWB regions of the juvenile acetabulum (65.3%/dry weight [DW]) and femoral head (75.4%/DW) cartilages. GAG content was highest in the WB region of the juvenile acetabulum (23.7%/DW) and the WB region of the fetal femoral head (27.5%/DW) cartilages. Histological staining for GAG and total collagen content followed the trends from the quantitative biochemical assays.ConclusionThis study provides a benchmark for the development and validation of preclinical porcine models for hip cartilage pathologies.
期刊介绍:
CARTILAGE publishes articles related to the musculoskeletal system with particular attention to cartilage repair, development, function, degeneration, transplantation, and rehabilitation. The journal is a forum for the exchange of ideas for the many types of researchers and clinicians involved in cartilage biology and repair. A primary objective of CARTILAGE is to foster the cross-fertilization of the findings between clinical and basic sciences throughout the various disciplines involved in cartilage repair.
The journal publishes full length original manuscripts on all types of cartilage including articular, nasal, auricular, tracheal/bronchial, and intervertebral disc fibrocartilage. Manuscripts on clinical and laboratory research are welcome. Review articles, editorials, and letters are also encouraged. The ICRS envisages CARTILAGE as a forum for the exchange of knowledge among clinicians, scientists, patients, and researchers.
The International Cartilage Repair Society (ICRS) is dedicated to promotion, encouragement, and distribution of fundamental and applied research of cartilage in order to permit a better knowledge of function and dysfunction of articular cartilage and its repair.