Lu Wang, Jinliang Chen, Wenjun Chen, Zourong Ruan, Honggang Lou, Dandan Yang, Bo Jiang
{"title":"In silico prediction of bioequivalence of atorvastatin tablets based on GastroPlus™ software.","authors":"Lu Wang, Jinliang Chen, Wenjun Chen, Zourong Ruan, Honggang Lou, Dandan Yang, Bo Jiang","doi":"10.1186/s40360-023-00689-4","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of intestinal absorption of various drugs based on computer simulations has been a reality. However, in vivo pharmacokinetic simulations and virtual bioequivalence evaluation based on GastroPlus™ have not been found. This study aimed to simulate plasma concentrations with different dissolution profiles and run population simulations to evaluate the bioequivalence of test and reference products of atorvastation using GastroPlus software. The dissolution profiles of the reference and test products of atorvastatin (20 mg tablets), and clinical plasma concentration-time data of the reference product were used for the simulations. The results showed that the simulated models were successfully established for atorvastatin tablets. Population simulation results indicated that the test formulation was bioequivalent to the reference formulation. The findings suggest that modelling is an essential tool to demonstrating the possibility of pharmacokinetic and bioequivalence for atorvastatin. It will contribute to understanding the potential risks during the development of generic products.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685666/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-023-00689-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of intestinal absorption of various drugs based on computer simulations has been a reality. However, in vivo pharmacokinetic simulations and virtual bioequivalence evaluation based on GastroPlus™ have not been found. This study aimed to simulate plasma concentrations with different dissolution profiles and run population simulations to evaluate the bioequivalence of test and reference products of atorvastation using GastroPlus software. The dissolution profiles of the reference and test products of atorvastatin (20 mg tablets), and clinical plasma concentration-time data of the reference product were used for the simulations. The results showed that the simulated models were successfully established for atorvastatin tablets. Population simulation results indicated that the test formulation was bioequivalent to the reference formulation. The findings suggest that modelling is an essential tool to demonstrating the possibility of pharmacokinetic and bioequivalence for atorvastatin. It will contribute to understanding the potential risks during the development of generic products.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.