Zhe Su, Wenjing Su, Chenglong Li, Peihui Ding, Kaixue Lao, Yiqian Li, Yanlin Wang
{"title":"Identification and Immune Characteristics Study of Pyroptosis‑Related Genes in Endometriosis","authors":"Zhe Su, Wenjing Su, Chenglong Li, Peihui Ding, Kaixue Lao, Yiqian Li, Yanlin Wang","doi":"10.1007/s10528-023-10583-7","DOIUrl":null,"url":null,"abstract":"<div><p>Endometriosis (EMT) is a prevalent gynecological disorder characterized by pain and infertility associated with the menstrual cycle. Pyroptosis, an emerging cell death mechanism, has been implicated in the pathogenesis of diverse diseases, highlighting its pivotal role in disease progression. Therefore, our study aimed to investigate the impact of pyroptosis in EMT using a comprehensive bioinformatics approach. We initially obtained two datasets from the Gene Expression Omnibus database and performed differential expression analysis to identify pyroptosis-related genes (PRGs) that were differentially expressed between EMT and non-EMT samples. Subsequently, several machine learning algorithms, namely least absolute shrinkage selection operator regression, support vector machine-recursive feature elimination, and random forest algorithms were used to identify a hub gene to construct an effective diagnostic model for EMT. Receiver operating characteristic curve analysis, nomogram, calibration curve, and decision curve analysis were applied to validate the performance of the model. Based on the selected hub gene, differential expression analysis between high- and low-expression groups was conducted to explore the functions and signaling pathways related to it. Additionally, the correlation between the hub gene and immune cells was investigated to gain insights into the immune microenvironment of EMT. Finally, a pyroptosis-related competing endogenous RNA network was constructed to elucidate the regulatory interactions of the hub gene. Our study revealed the potential contribution of a specific PRG to the pathogenesis of EMT, providing a novel perspective for clinical diagnosis and treatment of EMT.</p></div>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10528-023-10583-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometriosis (EMT) is a prevalent gynecological disorder characterized by pain and infertility associated with the menstrual cycle. Pyroptosis, an emerging cell death mechanism, has been implicated in the pathogenesis of diverse diseases, highlighting its pivotal role in disease progression. Therefore, our study aimed to investigate the impact of pyroptosis in EMT using a comprehensive bioinformatics approach. We initially obtained two datasets from the Gene Expression Omnibus database and performed differential expression analysis to identify pyroptosis-related genes (PRGs) that were differentially expressed between EMT and non-EMT samples. Subsequently, several machine learning algorithms, namely least absolute shrinkage selection operator regression, support vector machine-recursive feature elimination, and random forest algorithms were used to identify a hub gene to construct an effective diagnostic model for EMT. Receiver operating characteristic curve analysis, nomogram, calibration curve, and decision curve analysis were applied to validate the performance of the model. Based on the selected hub gene, differential expression analysis between high- and low-expression groups was conducted to explore the functions and signaling pathways related to it. Additionally, the correlation between the hub gene and immune cells was investigated to gain insights into the immune microenvironment of EMT. Finally, a pyroptosis-related competing endogenous RNA network was constructed to elucidate the regulatory interactions of the hub gene. Our study revealed the potential contribution of a specific PRG to the pathogenesis of EMT, providing a novel perspective for clinical diagnosis and treatment of EMT.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.