Insights into the role of sphingolipids in antifungal drug resistance

IF 5.7 2区 生物学 Q1 MYCOLOGY
Sapna Kalra, Sunita Tanwar, Vinay Kumar Bari
{"title":"Insights into the role of sphingolipids in antifungal drug resistance","authors":"Sapna Kalra,&nbsp;Sunita Tanwar,&nbsp;Vinay Kumar Bari","doi":"10.1016/j.fbr.2023.100342","DOIUrl":null,"url":null,"abstract":"<div><p>Sphingolipids are major constituents of the plasma membrane that can act as structural and signalling molecules in diverse organisms such as animals, plants, and fungi. The metabolism of sphingolipids in fungi has gained increasing attention due to its relevance in the context of pathogenicity and therapeutic intervention for fungal infections. Humans are susceptible to a variety of fungal infections, which can range from superficial infections on the skin and mucosal surfaces to life-threatening systemic and invasive infections. Additionally, immunocompromised individuals are more prone to developing systemic infections caused by <em>Candida, Aspergillus</em>, and <em>Cryptococcus</em> spp., which are difficult to treat and have a high risk of morbidity and mortality. Several antifungal drugs have been given clinical approval to treat systemic and invasive fungal infections, however, pathogenic fungi have the intrinsic capacity to evolve different resistance mechanisms. In recent years, sphingolipid molecules and their regulators have become significant factors in the pathogenesis and multi-drug resistance. Therefore, sphingolipid pathway inhibitors could be used either alone or in combination with existing antifungal drugs for the effective prevention of virulence, and pathogenesis or to kill the pathogenic fungi. In this review, we address the impact of sphingolipid metabolism and its regulators on antifungal drug resistance, as well as how they can be effectively targeted to improve the efficacy of currently available antifungal drugs.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"47 ","pages":"Article 100342"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749461323000489/pdfft?md5=3aebb26d239c0c29bb66338e9ec9dfd2&pid=1-s2.0-S1749461323000489-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461323000489","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sphingolipids are major constituents of the plasma membrane that can act as structural and signalling molecules in diverse organisms such as animals, plants, and fungi. The metabolism of sphingolipids in fungi has gained increasing attention due to its relevance in the context of pathogenicity and therapeutic intervention for fungal infections. Humans are susceptible to a variety of fungal infections, which can range from superficial infections on the skin and mucosal surfaces to life-threatening systemic and invasive infections. Additionally, immunocompromised individuals are more prone to developing systemic infections caused by Candida, Aspergillus, and Cryptococcus spp., which are difficult to treat and have a high risk of morbidity and mortality. Several antifungal drugs have been given clinical approval to treat systemic and invasive fungal infections, however, pathogenic fungi have the intrinsic capacity to evolve different resistance mechanisms. In recent years, sphingolipid molecules and their regulators have become significant factors in the pathogenesis and multi-drug resistance. Therefore, sphingolipid pathway inhibitors could be used either alone or in combination with existing antifungal drugs for the effective prevention of virulence, and pathogenesis or to kill the pathogenic fungi. In this review, we address the impact of sphingolipid metabolism and its regulators on antifungal drug resistance, as well as how they can be effectively targeted to improve the efficacy of currently available antifungal drugs.

鞘脂在抗真菌药物耐药性中的作用
鞘脂是质膜的主要成分,在动物、植物和真菌等多种生物中起着结构和信号分子的作用。由于鞘脂代谢与真菌感染的致病性和治疗干预相关,真菌中的鞘脂代谢受到越来越多的关注。人类易受各种真菌感染,其范围从皮肤和粘膜表面的浅表感染到危及生命的全身和侵袭性感染。此外,免疫功能低下的个体更容易发生念珠菌、曲霉菌和隐球菌引起的全身感染,这些感染难以治疗,发病率和死亡率都很高。几种抗真菌药物已被临床批准用于治疗全身和侵袭性真菌感染,然而,病原真菌具有进化不同耐药机制的内在能力。近年来,鞘脂分子及其调控因子已成为影响肿瘤发病和多重耐药的重要因素。因此,鞘脂途径抑制剂可单独或与现有抗真菌药物联合使用,以有效预防毒力,致病或杀死致病真菌。在这篇综述中,我们讨论了鞘脂代谢及其调节因子对抗真菌药物耐药性的影响,以及如何有效地靶向它们以提高现有抗真菌药物的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.60
自引率
0.00%
发文量
36
期刊介绍: Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信