Daniel Bia, Federico Salazar, Luis Cinca, Marcos Gutierrez, Álvaro Facta, Alejandro Diaz, Yanina Zócalo
{"title":"Impact of a cuff-based device calibration method on the agreement between invasive and noninvasive aortic and brachial pressure","authors":"Daniel Bia, Federico Salazar, Luis Cinca, Marcos Gutierrez, Álvaro Facta, Alejandro Diaz, Yanina Zócalo","doi":"10.1111/cpf.12869","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Brachial cuff-based methods are increasingly used to estimate aortic systolic blood pressure (aoSBP). However, there are several unresolved issues.</p>\n </section>\n \n <section>\n \n <h3> Aims</h3>\n \n <p>to determine to what extent the scheme used to calibrate brachial records (1) can affect noninvasive obtained aoSBP levels, and consequently, the level of agreement with the aoSBP recorded invasively, and (2) how different ways of calibrating ultimately impact the relationship between aoSBP and cardiac properties.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>brachial and aortic blood pressure (BP) was simultaneously obtained by invasive (catheterisation) and noninvasive (brachial oscillometric-device) methods (89 subjects). aoSBP was noninvasive obtained using three calibration schemes: ‘SD’: diastolic and systolic brachial BP, ‘C’: diastolic and calculated brachial mean BP (bMBP), ‘Osc’: diastolic and oscillometry-derived bMBP. Agreement between invasive and noninvasive aoSBP, and associations between BP and echocardiographic-derived parameters were analysed.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>‘C’ and ‘SD’ schemes generated aoSBP levels lower than those recorded invasively (mean errors: 6.9 and 10.1 mmHg); the opposite was found when considering ‘Osc’(mean error: −11.4 mmHg). As individuals had higher invasive aoSBP, the three calibration schemes increasingly underestimated aoSBP levels; and viceversa. The ‘range’ of invasive aoSBP in which the calibration schemes reach the lowest error level (−5–5 mmHg) is different: ‘C’: 103–131 mmHg; ‘Osc’: 159–201 mmHg; ‘SD’:101-124 mmHg. The calibration methods allowed reaching levels of association between aoSBP and cardiac characteristics, somewhat lower, but very similar to those obtained when considering invasive aoSBP. There is no evidence of a clear superiority of one calibration method over another when considering the association between aoSBP and cardiac characteristics.</p>\n </section>\n </div>","PeriodicalId":10504,"journal":{"name":"Clinical Physiology and Functional Imaging","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Physiology and Functional Imaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cpf.12869","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Brachial cuff-based methods are increasingly used to estimate aortic systolic blood pressure (aoSBP). However, there are several unresolved issues.
Aims
to determine to what extent the scheme used to calibrate brachial records (1) can affect noninvasive obtained aoSBP levels, and consequently, the level of agreement with the aoSBP recorded invasively, and (2) how different ways of calibrating ultimately impact the relationship between aoSBP and cardiac properties.
Methods
brachial and aortic blood pressure (BP) was simultaneously obtained by invasive (catheterisation) and noninvasive (brachial oscillometric-device) methods (89 subjects). aoSBP was noninvasive obtained using three calibration schemes: ‘SD’: diastolic and systolic brachial BP, ‘C’: diastolic and calculated brachial mean BP (bMBP), ‘Osc’: diastolic and oscillometry-derived bMBP. Agreement between invasive and noninvasive aoSBP, and associations between BP and echocardiographic-derived parameters were analysed.
Conclusions
‘C’ and ‘SD’ schemes generated aoSBP levels lower than those recorded invasively (mean errors: 6.9 and 10.1 mmHg); the opposite was found when considering ‘Osc’(mean error: −11.4 mmHg). As individuals had higher invasive aoSBP, the three calibration schemes increasingly underestimated aoSBP levels; and viceversa. The ‘range’ of invasive aoSBP in which the calibration schemes reach the lowest error level (−5–5 mmHg) is different: ‘C’: 103–131 mmHg; ‘Osc’: 159–201 mmHg; ‘SD’:101-124 mmHg. The calibration methods allowed reaching levels of association between aoSBP and cardiac characteristics, somewhat lower, but very similar to those obtained when considering invasive aoSBP. There is no evidence of a clear superiority of one calibration method over another when considering the association between aoSBP and cardiac characteristics.
期刊介绍:
Clinical Physiology and Functional Imaging publishes reports on clinical and experimental research pertinent to human physiology in health and disease. The scope of the Journal is very broad, covering all aspects of the regulatory system in the cardiovascular, renal and pulmonary systems with special emphasis on methodological aspects. The focus for the journal is, however, work that has potential clinical relevance. The Journal also features review articles on recent front-line research within these fields of interest.
Covered by the major abstracting services including Current Contents and Science Citation Index, Clinical Physiology and Functional Imaging plays an important role in providing effective and productive communication among clinical physiologists world-wide.