Junming Xia , Shigang Fei , Yigui Huang , Wenxuan Lai , Yue Yu , Lingying Liang , Hailin Wu , Luc Swevers , Jingchen Sun , Min Feng
{"title":"Single-nucleus sequencing of silkworm larval midgut reveals the immune escape strategy of BmNPV in the midgut during the late stage of infection","authors":"Junming Xia , Shigang Fei , Yigui Huang , Wenxuan Lai , Yue Yu , Lingying Liang , Hailin Wu , Luc Swevers , Jingchen Sun , Min Feng","doi":"10.1016/j.ibmb.2023.104043","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The midgut is an important barrier against microorganism invasion and proliferation, yet is the first tissue encountered when a baculovirus naturally invades the host. However, only limited knowledge is available how different midgut cell types contribute to the immune response and the clearance or promotion of viral infection. Here, single-nucleus </span>RNA sequencing<span> (snRNA seq) was employed to analyze the responses of various cell subpopulations in the silkworm larval midgut to </span></span><span><em>B. </em><em>mori</em></span><span><span> nucleopolyhedrovirus (BmNPV) infection. We identified 22 distinct clusters representing enteroendocrine cells<span> (EEs), enterocytes (ECs), intestinal </span></span>stem cells<span> (ISCs), Goblet cell-like and muscle cell types in the BmNPV-infected and uninfected silkworm larvae midgut at 72 h post infection. Further, our results revealed that the strategies for immune escape of BmNPV in the midgut at the late stage of infection include (1) inhibiting the response of antiviral pathways; (2) inhibiting the expression of antiviral host factors; (3) stimulating expression levels of genes promoting BmNPV replication. These findings suggest that the midgut, as the first line of defense against the invasion of the baculovirus, has dual characteristics of \"resistance\" and \"tolerance\". Our single-cell dataset reveals the diversity of silkworm larval midgut cells, and the transcriptome analysis provides insights into the interaction between host and virus infection at the single-cell level.</span></span></p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"164 ","pages":"Article 104043"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174823001376","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The midgut is an important barrier against microorganism invasion and proliferation, yet is the first tissue encountered when a baculovirus naturally invades the host. However, only limited knowledge is available how different midgut cell types contribute to the immune response and the clearance or promotion of viral infection. Here, single-nucleus RNA sequencing (snRNA seq) was employed to analyze the responses of various cell subpopulations in the silkworm larval midgut to B. mori nucleopolyhedrovirus (BmNPV) infection. We identified 22 distinct clusters representing enteroendocrine cells (EEs), enterocytes (ECs), intestinal stem cells (ISCs), Goblet cell-like and muscle cell types in the BmNPV-infected and uninfected silkworm larvae midgut at 72 h post infection. Further, our results revealed that the strategies for immune escape of BmNPV in the midgut at the late stage of infection include (1) inhibiting the response of antiviral pathways; (2) inhibiting the expression of antiviral host factors; (3) stimulating expression levels of genes promoting BmNPV replication. These findings suggest that the midgut, as the first line of defense against the invasion of the baculovirus, has dual characteristics of "resistance" and "tolerance". Our single-cell dataset reveals the diversity of silkworm larval midgut cells, and the transcriptome analysis provides insights into the interaction between host and virus infection at the single-cell level.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.