Insights into the Potential Role of Plasmids in the Versatility of the Genus Pantoea.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Biotechnology Pub Date : 2024-12-01 Epub Date: 2023-11-26 DOI:10.1007/s12033-023-00960-3
Srinidhi Shetty, Asmita Kamble, Harinder Singh
{"title":"Insights into the Potential Role of Plasmids in the Versatility of the Genus Pantoea.","authors":"Srinidhi Shetty, Asmita Kamble, Harinder Singh","doi":"10.1007/s12033-023-00960-3","DOIUrl":null,"url":null,"abstract":"<p><p>In the past two decades, 25 different species of the genus Pantoea within the Enterobacteriaceae family, have been isolated from different environmental niches. These species have a wide range of biological roles. Versatility in functions and hosts indicate that this genus has undergone extensive genetic diversification, which can be attributed to the different extra-chromosomal genetic elements or plasmids found across this genus. We have analyzed the functions of these plasmids and categorized them into four major groups for a better understanding of their future applications. The first and second group includes plasmids that contribute to genetic diversification and pathogenicity, respectively. The third group comprises cryptic plasmids of Pantoea. The last group includes plasmids that play a role in the metabolic versatility of the genus Pantoea. We have analyzed the data available up to May 2023 from two databases (viz; NCBI and PLSDB). In our analysis we have found a vast gap in knowledge. Complete gene annotations are available for only a few of the plasmids. This review highlights these challenges as an avenue for future research.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3398-3414"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00960-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the past two decades, 25 different species of the genus Pantoea within the Enterobacteriaceae family, have been isolated from different environmental niches. These species have a wide range of biological roles. Versatility in functions and hosts indicate that this genus has undergone extensive genetic diversification, which can be attributed to the different extra-chromosomal genetic elements or plasmids found across this genus. We have analyzed the functions of these plasmids and categorized them into four major groups for a better understanding of their future applications. The first and second group includes plasmids that contribute to genetic diversification and pathogenicity, respectively. The third group comprises cryptic plasmids of Pantoea. The last group includes plasmids that play a role in the metabolic versatility of the genus Pantoea. We have analyzed the data available up to May 2023 from two databases (viz; NCBI and PLSDB). In our analysis we have found a vast gap in knowledge. Complete gene annotations are available for only a few of the plasmids. This review highlights these challenges as an avenue for future research.

Abstract Image

质粒在泛藻属多样性中的潜在作用。
在过去的二十年中,已经从不同的环境生态位中分离出25种肠杆菌科Pantoea属。这些物种具有广泛的生物学作用。功能和寄主的多样性表明该属经历了广泛的遗传多样化,这可以归因于在该属中发现的不同染色体外遗传元件或质粒。我们分析了这些质粒的功能,并将它们分为四大类,以便更好地了解它们未来的应用。第一组和第二组分别包括有助于遗传多样化和致病性的质粒。第三组包括泛古菌的隐质粒。最后一组包括质粒,在泛藻属的代谢多样性中发挥作用。我们分析了截至2023年5月的两个数据库(即;NCBI和PLSDB)。在我们的分析中,我们发现了知识上的巨大差距。完整的基因注释仅适用于少数质粒。这篇综述强调了这些挑战作为未来研究的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信