Dardo Dallachiesa, O Mario Aguilar, Mauricio J Lozano
{"title":"Improved detection and phylogenetic analysis of plant proteins containing LysM domains.","authors":"Dardo Dallachiesa, O Mario Aguilar, Mauricio J Lozano","doi":"10.1071/FP23131","DOIUrl":null,"url":null,"abstract":"<p><p>Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":" ","pages":"NULL"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23131","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.