Adrian Chun Minh Loy, Wei Lin Ng, Sankar Bhattacharya
{"title":"Advanced characterization techniques for the development of Subatomic scale catalysts: One step closer to industrial scale fabrication","authors":"Adrian Chun Minh Loy, Wei Lin Ng, Sankar Bhattacharya","doi":"10.1016/j.mtcata.2023.100033","DOIUrl":null,"url":null,"abstract":"<div><p>To date, the large-scale fabrication of subatomic scale catalysts (SSCs) remains a formidable challenge despite their tremendous potential to drive future clean energy conversion and decarbonization technologies. The primary hurdle lies in understanding the physicochemical relationship at the multi-scale interface (i.e., nanoscale, sub-nano, clusters, atomic) in constructing the heterogeneous catalysts. Conversely, high throughput advanced characterizations offer efficient and accelerated analysis of catalysts' chemical properties, bridging the gap between laboratory-to-industrial scale catalyst development for various engineering applications. The implementation of advanced characterizations is paramount in reducing uncertainties in bulk production, particularly during pre-screening assessments of a diverse range of SSCs compositions and configurations. Overall, this review aims to provide an illuminating overview of the streamlined SSCs development process, propelling us one step closer to achieving bulk-scale fabrication.</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"4 ","pages":"Article 100033"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949754X23000339/pdfft?md5=95c8706239a036bf057c1c2b885fc375&pid=1-s2.0-S2949754X23000339-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X23000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To date, the large-scale fabrication of subatomic scale catalysts (SSCs) remains a formidable challenge despite their tremendous potential to drive future clean energy conversion and decarbonization technologies. The primary hurdle lies in understanding the physicochemical relationship at the multi-scale interface (i.e., nanoscale, sub-nano, clusters, atomic) in constructing the heterogeneous catalysts. Conversely, high throughput advanced characterizations offer efficient and accelerated analysis of catalysts' chemical properties, bridging the gap between laboratory-to-industrial scale catalyst development for various engineering applications. The implementation of advanced characterizations is paramount in reducing uncertainties in bulk production, particularly during pre-screening assessments of a diverse range of SSCs compositions and configurations. Overall, this review aims to provide an illuminating overview of the streamlined SSCs development process, propelling us one step closer to achieving bulk-scale fabrication.