A Study on an Intelligent Algorithm for Automatic Test Paper Generation and Scoring in University English Exams

Q3 Decision Sciences
Han Yang
{"title":"A Study on an Intelligent Algorithm for Automatic Test Paper Generation and Scoring in University English Exams","authors":"Han Yang","doi":"10.13052/jicts2245-800X.1144","DOIUrl":null,"url":null,"abstract":"This paper mainly studied the automatic test paper generation and scoring problems in university English exams. Firstly, an automatic test paper generation model was established. Then, an improved genetic algorithm (IGA) was designed for intelligent test paper generation, and it was also used to automatically score answers to Chinese-to-English translation questions in terms of syntax and semantics. It was found that compared with the traditional GA and particle swarm optimization algorithm, the IGA method was faster in generating test papers, with an average generation time of 25 s, and had a higher success rate (94%), suggesting higher validity, and the difficulty and differentiation degrees of the test papers were closer to the preset values. The results of automatic scoring also had a correlation of more than 0.8 with the manual scoring results. The results prove the effectiveness of the automatic test paper generation and scoring method. It can be promoted and applied in practice to enhance the security and fairness of large-scale English exams, as well as achieve objectivity and consistency in scoring.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"11 4","pages":"391-401"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10326101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10326101/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper mainly studied the automatic test paper generation and scoring problems in university English exams. Firstly, an automatic test paper generation model was established. Then, an improved genetic algorithm (IGA) was designed for intelligent test paper generation, and it was also used to automatically score answers to Chinese-to-English translation questions in terms of syntax and semantics. It was found that compared with the traditional GA and particle swarm optimization algorithm, the IGA method was faster in generating test papers, with an average generation time of 25 s, and had a higher success rate (94%), suggesting higher validity, and the difficulty and differentiation degrees of the test papers were closer to the preset values. The results of automatic scoring also had a correlation of more than 0.8 with the manual scoring results. The results prove the effectiveness of the automatic test paper generation and scoring method. It can be promoted and applied in practice to enhance the security and fairness of large-scale English exams, as well as achieve objectivity and consistency in scoring.
大学英语考试试卷自动生成与评分的智能算法研究
本文主要研究了大学英语考试中的自动出卷及评分问题。首先,建立了试卷自动生成模型;然后,设计了一种改进的遗传算法(IGA)用于智能试卷生成,并将其用于汉英翻译题的语法和语义自动评分。结果发现,与传统的遗传算法和粒子群优化算法相比,遗传算法生成试卷的速度更快,平均生成时间为25 s,成功率更高(94%),表明有效度更高,试卷的难度和分化程度更接近预设值。自动评分结果与人工评分结果的相关性也大于0.8。实验结果证明了该方法的有效性。可以在实践中推广应用,增强大型英语考试的安全性和公平性,实现评分的客观性和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of ICT Standardization
Journal of ICT Standardization Computer Science-Information Systems
CiteScore
2.20
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信