JongCheol Pyo , Yakov Pachepsky , Soobin Kim , Ather Abbas , Minjeong Kim , Yong Sung Kwon , Mayzonee Ligaray , Kyung Hwa Cho
{"title":"Long short-term memory models of water quality in inland water environments","authors":"JongCheol Pyo , Yakov Pachepsky , Soobin Kim , Ather Abbas , Minjeong Kim , Yong Sung Kwon , Mayzonee Ligaray , Kyung Hwa Cho","doi":"10.1016/j.wroa.2023.100207","DOIUrl":null,"url":null,"abstract":"<div><p>Water quality is substantially influenced by a multitude of dynamic and interrelated variables, including climate conditions, landuse and seasonal changes. Deep learning models have demonstrated predictive power of water quality due to the superior ability to automatically learn complex patterns and relationships from variables. Long short-term memory (LSTM), one of deep learning models for water quality prediction, is a type of recurrent neural network that can account for longer-term traits of time-dependent data. It is the most widely applied network used to predict the time series of water quality variables. First, we reviewed applications of a standalone LSTM and discussed its calculation time, prediction accuracy, and good robustness with process-driven numerical models and the other machine learning. This review was expanded into the LSTM model with data pre-processing techniques, including the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise method and Synchrosqueezed Wavelet Transform. The review then focused on the coupling of LSTM with a convolutional neural network, attention network, and transfer learning. The coupled networks demonstrated their performance over the standalone LSTM model. We also emphasized the influence of the static variables in the model and used the transformation method on the dataset. Outlook and further challenges were addressed. The outlook for research and application of LSTM in hydrology concludes the review.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"21 ","pages":"Article 100207"},"PeriodicalIF":7.2000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914723000439/pdfft?md5=484c14e00f7f4959d9fedf83e4cc42f8&pid=1-s2.0-S2589914723000439-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914723000439","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water quality is substantially influenced by a multitude of dynamic and interrelated variables, including climate conditions, landuse and seasonal changes. Deep learning models have demonstrated predictive power of water quality due to the superior ability to automatically learn complex patterns and relationships from variables. Long short-term memory (LSTM), one of deep learning models for water quality prediction, is a type of recurrent neural network that can account for longer-term traits of time-dependent data. It is the most widely applied network used to predict the time series of water quality variables. First, we reviewed applications of a standalone LSTM and discussed its calculation time, prediction accuracy, and good robustness with process-driven numerical models and the other machine learning. This review was expanded into the LSTM model with data pre-processing techniques, including the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise method and Synchrosqueezed Wavelet Transform. The review then focused on the coupling of LSTM with a convolutional neural network, attention network, and transfer learning. The coupled networks demonstrated their performance over the standalone LSTM model. We also emphasized the influence of the static variables in the model and used the transformation method on the dataset. Outlook and further challenges were addressed. The outlook for research and application of LSTM in hydrology concludes the review.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.