Marthe Bonamy , Michelle Delcourt , Richard Lang , Luke Postle
{"title":"Edge-colouring graphs with local list sizes","authors":"Marthe Bonamy , Michelle Delcourt , Richard Lang , Luke Postle","doi":"10.1016/j.jctb.2023.10.010","DOIUrl":null,"url":null,"abstract":"<div><p>The famous List Colouring Conjecture from the 1970s states that for every graph <em>G</em> the chromatic index of <em>G</em><span> is equal to its list chromatic index. In 1996 in a seminal paper, Kahn proved that the List Colouring Conjecture holds asymptotically. Our main result is a local generalization of Kahn's theorem. More precisely, we show that, for a graph </span><em>G</em><span> with sufficiently large maximum degree Δ and minimum degree </span><span><math><mi>δ</mi><mo>≥</mo><msup><mrow><mi>ln</mi></mrow><mrow><mn>25</mn></mrow></msup><mo></mo><mi>Δ</mi></math></span>, the following holds: for every assignment <em>L</em> of lists of colours to the edges of <em>G</em>, such that <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>⋅</mo><mi>max</mi><mo></mo><mrow><mo>{</mo><mi>deg</mi><mo></mo><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>}</mo></mrow></math></span> for each edge <span><math><mi>e</mi><mo>=</mo><mi>u</mi><mi>v</mi></math></span>, there is an <em>L</em>-edge-colouring of <em>G</em>. Furthermore, Kahn showed that the List Colouring Conjecture holds asymptotically for linear, <em>k</em><span>-uniform hypergraphs, and recently Molloy generalized Kahn's original result to correspondence colouring as well as its hypergraph generalization. We prove local versions of all of these generalizations by showing a weighted version that simultaneously implies all of our results.</span></p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"165 ","pages":"Pages 68-96"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562300093X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
The famous List Colouring Conjecture from the 1970s states that for every graph G the chromatic index of G is equal to its list chromatic index. In 1996 in a seminal paper, Kahn proved that the List Colouring Conjecture holds asymptotically. Our main result is a local generalization of Kahn's theorem. More precisely, we show that, for a graph G with sufficiently large maximum degree Δ and minimum degree , the following holds: for every assignment L of lists of colours to the edges of G, such that for each edge , there is an L-edge-colouring of G. Furthermore, Kahn showed that the List Colouring Conjecture holds asymptotically for linear, k-uniform hypergraphs, and recently Molloy generalized Kahn's original result to correspondence colouring as well as its hypergraph generalization. We prove local versions of all of these generalizations by showing a weighted version that simultaneously implies all of our results.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.