Akmal H. Sabri , Yujin Kim , Maria Marlow , David J. Scurr , Joel Segal , Ajay K. Banga , Leonid Kagan , Jong Bong Lee
{"title":"Intradermal and transdermal drug delivery using microneedles – Fabrication, performance evaluation and application to lymphatic delivery","authors":"Akmal H. Sabri , Yujin Kim , Maria Marlow , David J. Scurr , Joel Segal , Ajay K. Banga , Leonid Kagan , Jong Bong Lee","doi":"10.1016/j.addr.2019.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>The progress in microneedle research is evidenced by the transition from simple ‘poke and patch’ solid microneedles fabricated from silicon and stainless steel to the development of bioresponsive systems such as hydrogel-forming and dissolving microneedles. In this review, we provide an outline on various microneedle fabrication techniques which are currently employed. As a range of factors, including materials, geometry and design of the microneedles, affect the performance, it is important to understand the relationships between them and the resulting delivery of therapeutics. Accordingly, there is a need for appropriate methodologies and techniques for characterization and evaluation of microneedle performance, which will also be discussed. As the research expands, it has been observed that therapeutics delivered via microneedles has gained expedited access to the lymphatics, which makes them a favorable delivery method for targeting the lymphatic system. Such opportunity is valuable in the area of vaccination and treatment of lymphatic disorders, which is the final focus of the review.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"153 ","pages":"Pages 195-215"},"PeriodicalIF":15.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.addr.2019.10.004","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X19301863","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 93
Abstract
The progress in microneedle research is evidenced by the transition from simple ‘poke and patch’ solid microneedles fabricated from silicon and stainless steel to the development of bioresponsive systems such as hydrogel-forming and dissolving microneedles. In this review, we provide an outline on various microneedle fabrication techniques which are currently employed. As a range of factors, including materials, geometry and design of the microneedles, affect the performance, it is important to understand the relationships between them and the resulting delivery of therapeutics. Accordingly, there is a need for appropriate methodologies and techniques for characterization and evaluation of microneedle performance, which will also be discussed. As the research expands, it has been observed that therapeutics delivered via microneedles has gained expedited access to the lymphatics, which makes them a favorable delivery method for targeting the lymphatic system. Such opportunity is valuable in the area of vaccination and treatment of lymphatic disorders, which is the final focus of the review.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.