Lauren I Gulley Cox, Nicholas Dias, Chuan Zhang, Yingchun Zhang, Stacey L Gorniak
{"title":"Effects of Type II Diabetes on Proprioception during a Reach to Pinch Task.","authors":"Lauren I Gulley Cox, Nicholas Dias, Chuan Zhang, Yingchun Zhang, Stacey L Gorniak","doi":"10.1080/00222895.2023.2285888","DOIUrl":null,"url":null,"abstract":"<p><p>Older adults with type II diabetes (T2D) are at risk of developing nerve disorders that result in functional impairment. Most work in proprioceptive dysfunction in older adults with T2D has focused on functional deficits of the lower limb. The purpose of this study was to examine proprioceptive effects of T2D on the upper limb in older adults. Kinematic performance of a reach-to-pinch action toward a virtual target was assessed in a T2D group (60+ years old with T2D) and a healthy age- and sex-matched control group. Tactile and vibratory thresholds did not differ between T2D and controls. Task accuracy via mean pinch location was significantly worse for persons with T2D (pwT2D) with differences in wrist extension/flexion (ex/fl), wrist abduction/adduction (ab/ad), 1st carpometacarpal (CMC) ab/ad, 2nd metacarpophalangeal (MCP2) ex/fl, MCP2 ab/ad, and digit 1 and hand transport trajectories. Group differences persisted with consideration of body mass index; sex differences in task accuracy emerged. Findings indicate that proprioception of the upper extremity is altered in pwT2D such that they exhibit a unique aperture position and aiming strategy during a reach-to-pinch action. These findings characterize functional sensorimotor impairment of the upper limb in pwT2D with respect to workspaces without visual or tactile feedback.</p>","PeriodicalId":50125,"journal":{"name":"Journal of Motor Behavior","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957313/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Motor Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00222895.2023.2285888","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Older adults with type II diabetes (T2D) are at risk of developing nerve disorders that result in functional impairment. Most work in proprioceptive dysfunction in older adults with T2D has focused on functional deficits of the lower limb. The purpose of this study was to examine proprioceptive effects of T2D on the upper limb in older adults. Kinematic performance of a reach-to-pinch action toward a virtual target was assessed in a T2D group (60+ years old with T2D) and a healthy age- and sex-matched control group. Tactile and vibratory thresholds did not differ between T2D and controls. Task accuracy via mean pinch location was significantly worse for persons with T2D (pwT2D) with differences in wrist extension/flexion (ex/fl), wrist abduction/adduction (ab/ad), 1st carpometacarpal (CMC) ab/ad, 2nd metacarpophalangeal (MCP2) ex/fl, MCP2 ab/ad, and digit 1 and hand transport trajectories. Group differences persisted with consideration of body mass index; sex differences in task accuracy emerged. Findings indicate that proprioception of the upper extremity is altered in pwT2D such that they exhibit a unique aperture position and aiming strategy during a reach-to-pinch action. These findings characterize functional sensorimotor impairment of the upper limb in pwT2D with respect to workspaces without visual or tactile feedback.
期刊介绍:
The Journal of Motor Behavior, a multidisciplinary journal of movement neuroscience, publishes articles that contribute to a basic understanding of motor control. Articles from different disciplinary perspectives and levels of analysis are encouraged, including neurophysiological, biomechanical, electrophysiological, psychological, mathematical and physical, and clinical approaches. Applied studies are acceptable only to the extent that they provide a significant contribution to a basic issue in motor control. Of special interest to the journal are those articles that attempt to bridge insights from different disciplinary perspectives to infer processes underlying motor control. Those approaches may embrace postural, locomotive, and manipulative aspects of motor functions, as well as coordination of speech articulators and eye movements. Articles dealing with analytical techniques and mathematical modeling are welcome.