Akari Ogawa, Mizuki Sakamoto, Amiri Matsumoto, Tetsuei Okusaki, Ren Sasaya, Keisuke Irie, Nan Liang
{"title":"Accuracy of Force Generation and Preparatory Prefrontal Oxygenation in Ballistic Hand Power and Precision Grips.","authors":"Akari Ogawa, Mizuki Sakamoto, Amiri Matsumoto, Tetsuei Okusaki, Ren Sasaya, Keisuke Irie, Nan Liang","doi":"10.1080/00222895.2023.2283541","DOIUrl":null,"url":null,"abstract":"<p><p>It remains unclear whether accurate motor performance and cortical activation differ among grasping forms across several force levels. In the present study, a ballistic target force matching task (20%, 40%, 60%, and 80% of maximum voluntary force) with power grip, side pinch, and pulp pinch was utilized to explore the accuracy of the forces generated as well as the muscular activity of intrinsic and extrinsic hand muscles. By using near-infrared spectroscopy, we also examined bilateral dorsolateral prefrontal cortex (DLPFC) activation during the preparatory phase (initial 10 s) of the task. The accuracy of the power grip and pulp pinch was relatively higher than that of the side pinch, and the electromyographic activity of intrinsic hand muscles exhibited a similar trend for power grip and side pinch, while the opposite muscle recruitment pattern was observed for pulp pinch. The increment of DLPFC oxygenation across force levels differed among grasping forms, with greater activity at relatively higher levels in the power grip and side pinch, and at relatively lower levels in the pulp pinch. Taken together, the differential contribution of the DLPFC may be responsible for force generation depending on different grasping forms and force levels.</p>","PeriodicalId":50125,"journal":{"name":"Journal of Motor Behavior","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Motor Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00222895.2023.2283541","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
It remains unclear whether accurate motor performance and cortical activation differ among grasping forms across several force levels. In the present study, a ballistic target force matching task (20%, 40%, 60%, and 80% of maximum voluntary force) with power grip, side pinch, and pulp pinch was utilized to explore the accuracy of the forces generated as well as the muscular activity of intrinsic and extrinsic hand muscles. By using near-infrared spectroscopy, we also examined bilateral dorsolateral prefrontal cortex (DLPFC) activation during the preparatory phase (initial 10 s) of the task. The accuracy of the power grip and pulp pinch was relatively higher than that of the side pinch, and the electromyographic activity of intrinsic hand muscles exhibited a similar trend for power grip and side pinch, while the opposite muscle recruitment pattern was observed for pulp pinch. The increment of DLPFC oxygenation across force levels differed among grasping forms, with greater activity at relatively higher levels in the power grip and side pinch, and at relatively lower levels in the pulp pinch. Taken together, the differential contribution of the DLPFC may be responsible for force generation depending on different grasping forms and force levels.
期刊介绍:
The Journal of Motor Behavior, a multidisciplinary journal of movement neuroscience, publishes articles that contribute to a basic understanding of motor control. Articles from different disciplinary perspectives and levels of analysis are encouraged, including neurophysiological, biomechanical, electrophysiological, psychological, mathematical and physical, and clinical approaches. Applied studies are acceptable only to the extent that they provide a significant contribution to a basic issue in motor control. Of special interest to the journal are those articles that attempt to bridge insights from different disciplinary perspectives to infer processes underlying motor control. Those approaches may embrace postural, locomotive, and manipulative aspects of motor functions, as well as coordination of speech articulators and eye movements. Articles dealing with analytical techniques and mathematical modeling are welcome.