Yin-Di Hu, Zhao-Di Wang, Yuan-Fen Yue, Dai Li, Shu-Qing Zhen, Jie-Qiong Ding, Wei Meng, Hai-Li Zhu, Min Xie, Ling Liu
{"title":"Inhibition of HDAC6 alleviates cancer‑induced bone pain by reducing the activation of NLRP3 inflammasome.","authors":"Yin-Di Hu, Zhao-Di Wang, Yuan-Fen Yue, Dai Li, Shu-Qing Zhen, Jie-Qiong Ding, Wei Meng, Hai-Li Zhu, Min Xie, Ling Liu","doi":"10.3892/ijmm.2023.5328","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer‑induced bone pain (CIBP) is characterized as moderate to severe pain that negatively affects the daily functional status and quality of life of patients. When cancer cells metastasize and grow in bone marrow, this activates neuroinflammation in the spinal cord, which plays a vital role in the generation and persistence of chronic pain. In the present study, a model of CIBP was constructed by inoculating of MRMT‑1 rat breast carcinoma cells into the medullary cavity of the tibia in male Sprague‑Dawley rats. Following two weeks of surgery, CIBP rats exhibited damaged bone structure, increased pain sensitivity and impaired motor coordination. Neuroinflammation was activated in the spinal cords of CIBP rats, presenting with extensive leukocyte filtration, upregulated cytokine levels and activated astrocytes. Histone deacetylase 6 (HDAC6) works as a therapeutic target for chronic pain. The intrathecal injection of the HDAC6 inhibitor tubastatin A (TSA) in the lumbar spinal cord resulted in decreased spinal inflammatory cytokine production, suppressed spinal astrocytes activation and reduced NOD‑like receptor pyrin domain containing 3 (NLRP3) inflammasome activity. Consequently, this effect alleviated spontaneous pain and mechanical hyperalgesia and recovered motor coordination in CIBP rats. It was demonstrated by immunoprecipitation assay that TSA treatment reduced the interaction between HDAC6 and NLRP3. Cell research on C6 rat glioma cells served to verify that TSA treatment reduced HDAC6 and NLRP3 expression. In summary, the findings of present study indicated that TSA treatment alleviated cancer‑induced bone pain through the inhibition of HDAC6/NLRP3 inflammasome signaling in the spinal cord.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2023.5328","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer‑induced bone pain (CIBP) is characterized as moderate to severe pain that negatively affects the daily functional status and quality of life of patients. When cancer cells metastasize and grow in bone marrow, this activates neuroinflammation in the spinal cord, which plays a vital role in the generation and persistence of chronic pain. In the present study, a model of CIBP was constructed by inoculating of MRMT‑1 rat breast carcinoma cells into the medullary cavity of the tibia in male Sprague‑Dawley rats. Following two weeks of surgery, CIBP rats exhibited damaged bone structure, increased pain sensitivity and impaired motor coordination. Neuroinflammation was activated in the spinal cords of CIBP rats, presenting with extensive leukocyte filtration, upregulated cytokine levels and activated astrocytes. Histone deacetylase 6 (HDAC6) works as a therapeutic target for chronic pain. The intrathecal injection of the HDAC6 inhibitor tubastatin A (TSA) in the lumbar spinal cord resulted in decreased spinal inflammatory cytokine production, suppressed spinal astrocytes activation and reduced NOD‑like receptor pyrin domain containing 3 (NLRP3) inflammasome activity. Consequently, this effect alleviated spontaneous pain and mechanical hyperalgesia and recovered motor coordination in CIBP rats. It was demonstrated by immunoprecipitation assay that TSA treatment reduced the interaction between HDAC6 and NLRP3. Cell research on C6 rat glioma cells served to verify that TSA treatment reduced HDAC6 and NLRP3 expression. In summary, the findings of present study indicated that TSA treatment alleviated cancer‑induced bone pain through the inhibition of HDAC6/NLRP3 inflammasome signaling in the spinal cord.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.