Samuel Mawuli Adadey , Joy Afua Mensah , Kojo Sekyi Acquah , James Abugri , Richard Osei-Yeboah
{"title":"Early-onset diabetes in Africa: A mini-review of the current genetic profile","authors":"Samuel Mawuli Adadey , Joy Afua Mensah , Kojo Sekyi Acquah , James Abugri , Richard Osei-Yeboah","doi":"10.1016/j.ejmg.2023.104887","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Early-onset diabetes is poorly diagnosed partly due to its heterogeneity and variable presentations. Although several genes have been associated with the disease, these genes are not well studied in Africa. We sought to identify the major neonatal, early childhood, juvenile, or early-onset diabetes genes in Africa; and evaluate the available molecular methods used for investigating these gene variants. A literature search was conducted on PubMed, </span>Scopus<span>, Africa-Wide Information, and Web of Science databases. The retrieved records were screened and analyzed to identify genetic variants associated with early-onset diabetes. Although 319 records were retrieved, 32 were considered for the current review. Most of these records (22/32) were from North Africa. The disease condition was genetically heterogenous with most cases possessing unique gene variants. We identified 22 genes associated with early-onset diabetes, 9 of which had variants (n = 19) classified as pathogenic or likely pathogenic (PLP). Among the PLP variants, </span></span><em>IER3IP1</em><span>: p.(Leu78Pro) was the variant with the highest number of cases. There was limited data from West Africa, hence the contribution of genetic variability to early-onset diabetes in Africa could not be comprehensively evaluated. It is worth mentioning that most studies were focused on natural products as antidiabetics and only a few studies reported on the genetics of the disease. </span><span><em>ABCC8</em></span> and <em>KCNJ11</em><span><span> were implicated as major contributors to early-onset diabetes gene networks. Gene ontology analysis of the network associated ion channels, </span>impaired glucose tolerance<span>, and decreased insulin secretions to the disease. Our review highlights 9 genes from which PLP variants have been identified and can be considered for the development of an African diagnostic panel. There is a gap in early-onset diabetes genetic research from sub-Saharan Africa which is much needed to develop a comprehensive, efficient, and cost-effective genetic panel that will be useful in clinical practice on the continent and among the African diasporas</span></span><strong>.</strong></p></div>","PeriodicalId":11916,"journal":{"name":"European journal of medical genetics","volume":"66 12","pages":"Article 104887"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of medical genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1769721223001933","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Early-onset diabetes is poorly diagnosed partly due to its heterogeneity and variable presentations. Although several genes have been associated with the disease, these genes are not well studied in Africa. We sought to identify the major neonatal, early childhood, juvenile, or early-onset diabetes genes in Africa; and evaluate the available molecular methods used for investigating these gene variants. A literature search was conducted on PubMed, Scopus, Africa-Wide Information, and Web of Science databases. The retrieved records were screened and analyzed to identify genetic variants associated with early-onset diabetes. Although 319 records were retrieved, 32 were considered for the current review. Most of these records (22/32) were from North Africa. The disease condition was genetically heterogenous with most cases possessing unique gene variants. We identified 22 genes associated with early-onset diabetes, 9 of which had variants (n = 19) classified as pathogenic or likely pathogenic (PLP). Among the PLP variants, IER3IP1: p.(Leu78Pro) was the variant with the highest number of cases. There was limited data from West Africa, hence the contribution of genetic variability to early-onset diabetes in Africa could not be comprehensively evaluated. It is worth mentioning that most studies were focused on natural products as antidiabetics and only a few studies reported on the genetics of the disease. ABCC8 and KCNJ11 were implicated as major contributors to early-onset diabetes gene networks. Gene ontology analysis of the network associated ion channels, impaired glucose tolerance, and decreased insulin secretions to the disease. Our review highlights 9 genes from which PLP variants have been identified and can be considered for the development of an African diagnostic panel. There is a gap in early-onset diabetes genetic research from sub-Saharan Africa which is much needed to develop a comprehensive, efficient, and cost-effective genetic panel that will be useful in clinical practice on the continent and among the African diasporas.
期刊介绍:
The European Journal of Medical Genetics (EJMG) is a peer-reviewed journal that publishes articles in English on various aspects of human and medical genetics and of the genetics of experimental models.
Original clinical and experimental research articles, short clinical reports, review articles and letters to the editor are welcome on topics such as :
• Dysmorphology and syndrome delineation
• Molecular genetics and molecular cytogenetics of inherited disorders
• Clinical applications of genomics and nextgen sequencing technologies
• Syndromal cancer genetics
• Behavioral genetics
• Community genetics
• Fetal pathology and prenatal diagnosis
• Genetic counseling.