{"title":"Drying behaviour of nanofluid sessile droplets on self-affine vis-à-vis corrugated nanorough surfaces","authors":"Deeksha Rani, Subhendu Sarkar","doi":"10.1140/epje/s10189-023-00374-8","DOIUrl":null,"url":null,"abstract":"<p>In recent years, evaporative self-assembly of sessile droplets has gained considerable attention owing to its wide applicability in many areas. While the phenomenon is well studied for smooth and isotropically rough (self-affine) surfaces, investigations comparing the outcomes on self-affine vis-à-vis corrugated surfaces remains to be done. In this experimental work, we compare the wetting and evaporation dynamics of nano-colloidal microlitre droplets on self-affine and corrugated nanorough surfaces having identical roughnesses and interface properties. The coupled influence of particle size, concentration, and surface structuring has been explored. Differences in wettability and evaporation dynamics are observed, which are explained via the interaction between wetting fluid and anisotropic surface roughness. Our findings exhibit different temporal behaviour of contact radius and angle in the evaporation process of the droplets. Further, the corrugated surface exhibits anisotropic wettability with a monotonic change in droplet shape as evaporation proceeds, finally giving rise to irregular dried patterns. The scaled rim width and crack spacing of the particulate deposits are examined. Our results can inspire fabrication of surfaces that can facilitate direction-dependent droplet motion for specific applications.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00374-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, evaporative self-assembly of sessile droplets has gained considerable attention owing to its wide applicability in many areas. While the phenomenon is well studied for smooth and isotropically rough (self-affine) surfaces, investigations comparing the outcomes on self-affine vis-à-vis corrugated surfaces remains to be done. In this experimental work, we compare the wetting and evaporation dynamics of nano-colloidal microlitre droplets on self-affine and corrugated nanorough surfaces having identical roughnesses and interface properties. The coupled influence of particle size, concentration, and surface structuring has been explored. Differences in wettability and evaporation dynamics are observed, which are explained via the interaction between wetting fluid and anisotropic surface roughness. Our findings exhibit different temporal behaviour of contact radius and angle in the evaporation process of the droplets. Further, the corrugated surface exhibits anisotropic wettability with a monotonic change in droplet shape as evaporation proceeds, finally giving rise to irregular dried patterns. The scaled rim width and crack spacing of the particulate deposits are examined. Our results can inspire fabrication of surfaces that can facilitate direction-dependent droplet motion for specific applications.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.