Qiao Zhang, Jinlin Chen, Jingjing Lin, Ruichao Liang, Min He, Yanchao Wang, Hong Tan
{"title":"Porous Three-Dimensional Polyurethane Scaffolds Promote Scar-Free Endogenous Regeneration After Acute Brain Hemorrhage.","authors":"Qiao Zhang, Jinlin Chen, Jingjing Lin, Ruichao Liang, Min He, Yanchao Wang, Hong Tan","doi":"10.1007/s12975-023-01212-x","DOIUrl":null,"url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke and is associated with significant morbidity and mortality. Despite advances in the clinical treatment of ICH, limited progress has been made regarding endogenous brain regeneration after ICH. Failure of brain regeneration is mainly attributed to the inhibitive regenerative microenvironment caused by secondary injury after ICH. In this study, we investigated a three-dimensional biodegradable waterborne polyurethane (BWPU) scaffold as a tool to promote brain regeneration after ICH. After implantation into the cavity following hematoma evacuation, these implanted scaffolds could act as a reservoir; store a series of necrotic debris, cytokines, and chemokines; and attract microglia/macrophages to their pores. Subsequently, these microglia/macrophages were polarized into the M1-like subtype to eliminate these substances. This process disperses M1-like immune cells and prevents the formation of dense glial scar-free structures after ICH. Inflammatory cells in scaffolds include scar-free secreted growth factors and extracellular matrix (ECM) proteins, and further induce a M2-like immune cells enriched regeneration-predominant microenvironment to promote endogenous brain regeneration with functional recovery. In summary, in this work, we have revealed the potential and mechanism of the BWPU scaffold as a tool to promote endogenous brain tissue regeneration after ICH.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"299-314"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-023-01212-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke and is associated with significant morbidity and mortality. Despite advances in the clinical treatment of ICH, limited progress has been made regarding endogenous brain regeneration after ICH. Failure of brain regeneration is mainly attributed to the inhibitive regenerative microenvironment caused by secondary injury after ICH. In this study, we investigated a three-dimensional biodegradable waterborne polyurethane (BWPU) scaffold as a tool to promote brain regeneration after ICH. After implantation into the cavity following hematoma evacuation, these implanted scaffolds could act as a reservoir; store a series of necrotic debris, cytokines, and chemokines; and attract microglia/macrophages to their pores. Subsequently, these microglia/macrophages were polarized into the M1-like subtype to eliminate these substances. This process disperses M1-like immune cells and prevents the formation of dense glial scar-free structures after ICH. Inflammatory cells in scaffolds include scar-free secreted growth factors and extracellular matrix (ECM) proteins, and further induce a M2-like immune cells enriched regeneration-predominant microenvironment to promote endogenous brain regeneration with functional recovery. In summary, in this work, we have revealed the potential and mechanism of the BWPU scaffold as a tool to promote endogenous brain tissue regeneration after ICH.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.