Determination of trace fluoroquinolones in honey and milk based on cyclodextrin modified magnetic metal-organic frameworks solid phase extraction coupled with ultra-high performance liquid chromatography
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yangkun Sun , Jingjing Kuang , Yongzhe Cheng , Chuhui Lin , Hongyang Zhang , Min Zhang , Fanghong Ning , Ping Hu
{"title":"Determination of trace fluoroquinolones in honey and milk based on cyclodextrin modified magnetic metal-organic frameworks solid phase extraction coupled with ultra-high performance liquid chromatography","authors":"Yangkun Sun , Jingjing Kuang , Yongzhe Cheng , Chuhui Lin , Hongyang Zhang , Min Zhang , Fanghong Ning , Ping Hu","doi":"10.1016/j.chroma.2023.464521","DOIUrl":null,"url":null,"abstract":"<div><p>Long-term intake of animal-derived foods with excessive fluoroquinolones (FQs) will cause damage to human health, so it is critical to establish a feasible approach for sensitive and rapid monitoring of FQs residues. In this study, a new cyclodextrin modified magnetic metal-organic frameworks (Fe<sub>3</sub>O<sub>4</sub>@UiO-66-CD) was successfully synthesized by amidation reaction and applied to magnetic solid phase extraction (MSPE) for FQs analysis. The adsorption behavior of Fe<sub>3</sub>O<sub>4</sub><span>@UiO-66-CD was consistent with the pseudo-second-order kinetics and Freundlich isothermal adsorption model, which indicated that the designed material had various interactions on FQs, such as host-guest interaction and π-π interaction. The parameters of MSPE were optimized and the determination method of norfloxacin, enrofloxacin, lomefloxacin and gatifloxacin was established by using MSPE combined with ultra-high performance liquid chromatography (UHPLC) and fluorescence detector (FLD). The method validation results displayed that the detection limits were 0.02–0.09 ng/mL, and the RSDs of intra-day and inter-day precision were less than 4.1 and 6.4 %, respectively. In the target FQs analysis of real honey and milk samples, the recoveries at different fortified concentrations were in the ranges of 88.4 % to 108.6 % with RSD ≤ 5.7 %. The results showed that the proposed method was sensitive, accurate and reliable for the determination of trace FQs in animal-derived foods.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002196732300746X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term intake of animal-derived foods with excessive fluoroquinolones (FQs) will cause damage to human health, so it is critical to establish a feasible approach for sensitive and rapid monitoring of FQs residues. In this study, a new cyclodextrin modified magnetic metal-organic frameworks (Fe3O4@UiO-66-CD) was successfully synthesized by amidation reaction and applied to magnetic solid phase extraction (MSPE) for FQs analysis. The adsorption behavior of Fe3O4@UiO-66-CD was consistent with the pseudo-second-order kinetics and Freundlich isothermal adsorption model, which indicated that the designed material had various interactions on FQs, such as host-guest interaction and π-π interaction. The parameters of MSPE were optimized and the determination method of norfloxacin, enrofloxacin, lomefloxacin and gatifloxacin was established by using MSPE combined with ultra-high performance liquid chromatography (UHPLC) and fluorescence detector (FLD). The method validation results displayed that the detection limits were 0.02–0.09 ng/mL, and the RSDs of intra-day and inter-day precision were less than 4.1 and 6.4 %, respectively. In the target FQs analysis of real honey and milk samples, the recoveries at different fortified concentrations were in the ranges of 88.4 % to 108.6 % with RSD ≤ 5.7 %. The results showed that the proposed method was sensitive, accurate and reliable for the determination of trace FQs in animal-derived foods.