{"title":"Complete Suppression of Phase Segregation in Mixed-Halide Perovskite Nanocrystals under Periodic Heating","authors":"Shengnan Feng, Yu Ju, Rentong Duan, Zaiqin Man, Shuyi Li, Fengrui Hu, Chunfeng Zhang, Shuxia Tao, Weihua Zhang, Min Xiao, Xiaoyong Wang","doi":"10.1002/adma.202308032","DOIUrl":null,"url":null,"abstract":"<p>Under continuous light illumination, it is known that localized domains with segregated halide compositions form in semiconducting mixed-halide perovskites, thus severely limiting their optoelectronic applications due to the negative changes in bandgap energies and charge-carrier characteristics. Here mixed-halide perovskite CsPbBr<sub>1.2</sub>I<sub>1.8</sub> nanocrystals are deposited onto an indium tin oxide substrate, whose temperature can be rapidly changed by ≈10 °C in a few seconds by applying or removing an external voltage. Such a sudden temperature change induces a temporary transition of CsPbBr<sub>1.2</sub>I<sub>1.8</sub> nanocrystals from the segregated phase to the mixed phase, the latter of which can be permanently maintained when the light illumination is coupled with periodic heating cycles. These findings mark the emergence of a practical solution to the detrimental phase-segregation problem, given that a small temperature modulation is readily available in various fundamental studies and practical devices of mixed-halide perovskites.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 5","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202308032","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Under continuous light illumination, it is known that localized domains with segregated halide compositions form in semiconducting mixed-halide perovskites, thus severely limiting their optoelectronic applications due to the negative changes in bandgap energies and charge-carrier characteristics. Here mixed-halide perovskite CsPbBr1.2I1.8 nanocrystals are deposited onto an indium tin oxide substrate, whose temperature can be rapidly changed by ≈10 °C in a few seconds by applying or removing an external voltage. Such a sudden temperature change induces a temporary transition of CsPbBr1.2I1.8 nanocrystals from the segregated phase to the mixed phase, the latter of which can be permanently maintained when the light illumination is coupled with periodic heating cycles. These findings mark the emergence of a practical solution to the detrimental phase-segregation problem, given that a small temperature modulation is readily available in various fundamental studies and practical devices of mixed-halide perovskites.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.