Dilational symmetries of decomposition and coorbit spaces

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Hartmut Führ , Reihaneh Raisi-Tousi
{"title":"Dilational symmetries of decomposition and coorbit spaces","authors":"Hartmut Führ ,&nbsp;Reihaneh Raisi-Tousi","doi":"10.1016/j.acha.2023.101610","DOIUrl":null,"url":null,"abstract":"<div><p><span>We investigate the invariance properties of general wavelet coorbit spaces and Besov-type </span>decomposition spaces under dilations by matrices. We show that these matrices can be characterized by quasi-isometry properties with respect to a certain metric in frequency domain. We formulate versions of this phenomenon both for the decomposition and coorbit space settings.</p><p>We then apply the general results to a particular class of dilation groups, the so-called shearlet dilation groups. We present a general, algebraic characterization of matrices that are coorbit compatible with a given shearlet dilation group. We explicitly determine the groups of compatible dilations, for a variety of concrete examples.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101610"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000970","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the invariance properties of general wavelet coorbit spaces and Besov-type decomposition spaces under dilations by matrices. We show that these matrices can be characterized by quasi-isometry properties with respect to a certain metric in frequency domain. We formulate versions of this phenomenon both for the decomposition and coorbit space settings.

We then apply the general results to a particular class of dilation groups, the so-called shearlet dilation groups. We present a general, algebraic characterization of matrices that are coorbit compatible with a given shearlet dilation group. We explicitly determine the groups of compatible dilations, for a variety of concrete examples.

分解与共轨道空间的扩张对称性
研究了一般小波共轨空间和besov型分解空间在矩阵扩张下的不变性。我们证明了这些矩阵可以在频域上对某个度规具有准等距性质。我们为分解和共轨空间设置制定了这一现象的版本。然后,我们将一般结果应用于一类特殊的膨胀群,即所谓的shearlet膨胀群。我们提出了与给定shearlet扩张群共轨相容的矩阵的一般代数表征。对于各种具体的例子,我们明确地确定相容膨胀的群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信